Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T04:21:26.807Z Has data issue: false hasContentIssue false

SUSTAINABILITY IN ENGINEERING EDUCATION - DESCRIPTION AND COMPARISON OF TWO UNIVERSITY COURSES

Published online by Cambridge University Press:  27 July 2021

Daniela Kattwinkel*
Affiliation:
Ruhr-Universität Bochum
Ludger Heide
Affiliation:
Technische Universität Berlin
Anne Syré
Affiliation:
Technische Universität Berlin
Alexander Grahle
Affiliation:
Technische Universität Berlin
Beate Bender
Affiliation:
Ruhr-Universität Bochum
Dietmar Göhlich
Affiliation:
Technische Universität Berlin
*
Kattwinkel, Daniela, Ruhr-Universitaet Bochum, Product Development, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sustainable products are becoming increasingly important for companies in order to succeed. However, the development of sustainable products poses a complex challenge, because alongside the classical product development requirements, additional social, economic and ecologic requirements arise. Despite the increasing relevance of this topic, sustainability is not yet fully integrated into the product development processes and mindsets within companies. Simultaneously, the integration of sustainability into engineering education is still insufficient and traditional teaching formats seem to be inadequate to teach such complex and multifaceted topics. Within this publication, the development, the contents and the implementation of two different university engineering courses for sustainability and environmentally compatible product development are described and compared. The different approaches to develop and incorporate sustainability into the engineering education and the usage of innovative teaching concepts are demonstrated to encourage and inspire other universities.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Abel, M., Czajkowski, S., Faatz, L., Metternich, J. and Tenberg, R. (2013), “Kompetenzorientiertes Curriculum für Lernfabriken: Ein didaktisches hinterlegtes Konzept für Lernfabriken”, wt Werkstatttechnik online, Vol. 103 No. 3.Google Scholar
Abele, E., Tenberg, R., Wennemer, J. and Cachay, J. (2010), “Kompetenzenzwicklung in Lernfabriken für die Produktion”, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Vol. 105 No. 10, pp. 909913, 10.3139/104.110415.CrossRefGoogle Scholar
Bender, B., Kreimeier, D., Herzog, M. and Wienbruch, T. (2015), “Learning Factory 2.0 – Integrated View of Product Development and Production”, Procedia CIRP, Vol. 32, pp. 98103, 10.1016/j.procir.2015.02.226.CrossRefGoogle Scholar
Benoît, C. and Mazijn, B. (2009), Guidelines for social life cycle assessment of products, United Nations Environment Programme, Paris, France, [deslibris e-book] edition.Google Scholar
Birkhofer, H., Schulze, K., Zhao, S. and Sarnes, J. (2018), “Umweltgerechtes Konstruieren”, in: Rieg, F. (Editor), Handbuch Konstruktion, Hanser, München, pp. 599620.CrossRefGoogle Scholar
Blue Engineering (2020), “Hauptseite”, Available: (http://www.blue-engineering.org/wiki/Hauptseite). (2020-11-17).Google Scholar
Böhle, F. (Editor) (2017), Arbeit als Subjektivierendes Handeln: Handlungsfähigkeit bei Unwägbarkeiten und Ungewissheit, Springer VS, Wiesbaden, 10.1007/978-3-658-14983-3.CrossRefGoogle Scholar
Brunner, P.H. and Rechberger, H. (2016), Practical handbook of material flow analysis, Vol. 1, CRC press.CrossRefGoogle Scholar
Buchert, T., Kaluza, A., Halstenberg, F.A., Lindow, K., Hayka, H. and Stark, R. (2014), “Enabling Product Development Engineers to Select and Combine Methods for Sustainable Design”, Procedia CIRP, Vol. 15, pp. 413-418, 10.1016/j.procir.2014.06.025. 21st CIRP Conference on Life Cycle Engineering.CrossRefGoogle Scholar
Dannheim, F. (1999), Die Entwicklung umweltgerechter Produkte im Spannungsfeld von Ökologie und Ökonomie: Eine Analyse unter besonderer Berücksichtigung der Nutzungsphase: Zugl.: Darmstadt, Techn. Univ., Diss., 1999, Vol. 320 of Fortschritt-Berichte VDI Reihe 1, Konstruktionstechnik, Maschinenelemente, VDI-Verl., Düsseldorf, als ms. gedr edition.Google Scholar
Dhillon, B.S. (2009), Life cycle costing for engineers, Crc Press.CrossRefGoogle Scholar
DIN e. V. (2009), “DIN EN ISO 14040: Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen (ISO 14040:2006); Deutsche und Englische Fassung EN ISO 14040:2006”, 10.31030/1555059.Google Scholar
Ernst, J., Hellge, V., Hoffmann, J., Schleidt, B. and Thul, M.J. (2013), “Humanfaktoren in der Produktentwicklung: Kurzbericht”.CrossRefGoogle Scholar
European Commission – Education and Culture (2008), The European Qualifications Framework for Lifelong Learning (EQF), Office for Official Publications of the European Communities, Luxembourg.Google Scholar
Jensen, L. (Editor) (2019), The Sustainable Development Goals Report 2019, Sustainable Development Goals report, United Nations, New York.Google Scholar
Kattwinkel, D. and Bender, B. (2020), “Competences for the Development of Ecodesign Products”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, p. 17351744, 10.1017/dsd.2020.43.CrossRefGoogle Scholar
Moodle Contributors (2020), “About Moodle”, Available: (https://moodle.com/about/). (2020-11-19).Google Scholar
MPM Team (2020), “Fachgebiet Methoden der Produktentwicklung und Mechatronik”, Available: (https://www.mpm.tu-berlin.de/menue/home/). Accessed: 2020-11-06.Google Scholar
Niegemann, H. (2018), “Instructional Design”, in: Niegemann, H.M. and Weinberger, A. (Editors), Lernen mit Bildungstechnologien, Vol. 40 of Springer Reference Psychologie, Springer, Berlin, Heidelberg, pp. 157, 10.1007/978-3-662-54373-3_7-1.Google Scholar
Oberender, C. (2006), Die Nutzungsphase und ihre Bedeutung für die Entwicklung umweltgerechter Produkte, Vol. nr. 385 of Fortschritt-Berichte VDI. Reihe 1, Konstruktionstechnik/Maschinenelemente, VDI Verlag, Düsseldorf.Google Scholar
Ouden, H.D. and Rottlaender, E.M. (2017), Hochschuldidaktik in der Praxis: Lehrveranstaltungen planen: Ein Workbook, Vol. 8719 of utb, Verlag Barbara Budrich, Opladen and Toronto.Google Scholar
Pongratz, S. and Baier, A. (2015), Encouraging Engineering Students to Question Technological Solutions for Complex Ecological and Social Problems, Springer International Publishing, Cham, pp. 375386, 10.1007/978-3-319-09474-8_27.Google Scholar
Poser, H. (2016), Von der Theodizee zur Technodizee: Ein altes Problem in neuer Gestalt, Springer VS, Wiesbaden, 10.1007/978-3-658-08152-2_14.Google Scholar
Preißler, I., Hammerschmidt, J., Müller, R. and Scholl, S. (2010), “Hochschuldidaktik trifft Ingenieursausbildung: Segen oder Fluch?”, Didaktik der Physik.Google Scholar
Ruhr-Universität Bochum (2020), “Facts and figures”, Available: (https://uni.ruhr-uni-bochum.de/en/facts-and-figures). (2020-12-11).Google Scholar
Seel, N.M. (1999), “Instruktionsdesign: Modelle und Anwendungsgebiete”, Unterrichtswissenschaft, Vol. 1 No. 27, pp. 211.Google Scholar
Tisch, M. and Metternich, J. (2017), “Potentials and Limits of Learning Factories in Research, Innovation Transfer, Education, and Training”, Procedia Manufacturing, Vol. 9, pp. 8996, 10.1016/j.promfg.2017.04.027.CrossRefGoogle Scholar
TU Berlin (2020), “Die Technische Universität Berlin in Daten und Zahlen”, Available: (https://www.tu.berlin/ueber-die-tu-berlin/profil/tu-berlin-in-zahlen/). (2020-11-06).Google Scholar
Verein Deutscher Ingenieure (2000), Technology Assessment - Concepts and Foundations, VDI-Richtlinie 3780.Google Scholar