Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T19:00:07.942Z Has data issue: false hasContentIssue false

Success Factors for the Validation of Requirements for New Product Generations – A Case Study on Using Field Gathered Data

Published online by Cambridge University Press:  26 May 2022

S. Wagenmann*
Affiliation:
Karlsruhe Institute of Technology, Germany
N. Bursac
Affiliation:
Karlsruhe Institute of Technology, Germany
S. Rapp
Affiliation:
Karlsruhe Institute of Technology, Germany
A. Albers
Affiliation:
Karlsruhe Institute of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper investigates which activities and success factors can be identified for the data-driven validation of functional requirements. For this purpose, a case study is conducted at a machine tool manufacturer. To validate functional requirements by analyzing data of reference products, these activities must be performed iteratively: basic work, interdisciplinary work, programming and check results. For the successful execution of data-driven validation, the success factors: data origin, acceptance, data quality, knowledge about data and combination of domain knowledge must be considered.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Alber, Albers; Rapp, S.; Birk, C.; Bursac, Nikola (2017): Die Frühe Phase der PGE - Produktgenerationsentwicklung. In Binz, Hansgeorg, Bertsche, Bernd, Bauer, Wilhelm, Spath, Dieter, Roth, Daniel (Eds.): Stuttgarter Symposium für Produktentwicklung: Fraunhofer IAO.Google Scholar
Albers, A.; Rapp, S.; Fahl, J.; Hirschter, T.; Revfi, S.; Schulz, M. et al. . (2020): PROPOSING A GENERALIZED DESCRIPTION OF VARIATIONS IN DIFFERENT TYPES OF SYSTEMS BY THE MODEL OF PGE. In Proceedings of the Design Society: DESIGN Conference 1, pp. 22352244. https://dx.doi.org/10.1017/dsd.2020.315.Google Scholar
Albers, Albert; Braun, Andreas (2011): A generalised framework to compass and to support complex product engineering processes. In IJPD 15 (1/2/3), pp. 625. https://dx.doi.org/10.1504/IJPD.2011.043659.CrossRefGoogle Scholar
Albers, Albert; Bursac, Nikola; Wintergerst, Eike (2015): Produktgenerationsentwicklung – Bedeutung und Herausforderungen aus einer entwicklungsmethodischen Perspektive. In Binz, Hansgeorg, Bertsche, Bernd, Bauer, Wilhelm, Roth, Daniel (Eds.): Stuttgarter Symposium für Produktentwicklung, SSP 2015: Fraunhofer IAO.Google Scholar
Albers, Albert; Haug, Fabian; Heitger, Nicolas; Fahl, Joshua; Hirschter, Tobias (2019a): Entwicklungsgenerationen zur Steuerung der PGE – Produktgenerationsentwicklung: Von der Bauteil- zur Funktionsorientierung in der Automobilentwicklung. In : Stuttgarter Symposium für Produktentwicklung SSP 2019, Stuttgart, 16. Mai 2019. Hrsg.: H. Binz: Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, pp. 253262.Google Scholar
Albers, Albert; Heimicke, Jonas; Spadinger, Markus; Reiss, Nicolas; Breitschuh, Jan; Richter, Thilo et al. . (2019b): A systematic approach to situation-adequate mechatronic system development by ASD - Agile Systems Design. In Procedia CIRP 84, pp. 10151022. https://dx.doi.org/10.1016/j.procir.2019.03.312.CrossRefGoogle Scholar
Albers, Albert; Rapp, Simon; Peglow, Natalie; Stürmlinger, Tobias; Heimicke, Jonas; Wattenberg, Friedrich; Wessels, Holger (2019c): Variations as Activity Patterns: A Basis for Project Planning in PGE – Product Generation Engineering. In Procedia CIRP 84, pp. 966972. https://dx.doi.org/10.1016/j.procir.2019.04.314.CrossRefGoogle Scholar
Albers, Albert; Rapp, Simon; Spadinger, Markus; Richter, Thilo; Birk, Clemens; Marthaler, Florian et al. . (2019d): The Reference System in the Model of PGE: Proposing a Generalized Description of Reference Products and their Interrelations. In Proceedings of the Design Society: International Conference on Engineering Design 1 (1), pp. 16931702. https://dx.doi.org/10.1017/dsi.2019.175.Google Scholar
Bharadwaj, Neeraj; Noble, Charles (2017): Finding Innovation in Data Rich Environments. In J Prod Innov Manag 34 (5), pp. 560564. https://dx.doi.org/10.1111/jpim.12407.CrossRefGoogle Scholar
Birkhäuser, Benedikt; Pottebaum, Jens; Koch, Rainer (2009): Unterstützung von Einsatzentscheidungen der Feuerwehr auf Basis IT-unterstützter Kräftekoordination. In Informatik 2009 - Im Focus das Leben, pp. 13931396.Google Scholar
Blessing, Lucienne T.M.; Chakrabarti, Amaresh: DRM, a Design Research Methodology. London.Google Scholar
Bursac, Nikola (2016): Model Based Systems Engineering zur Unterstützung der Baukastenentwicklung im Kontext der Frühen Phase der Produktgenerationsentwicklung. Karlsruhe.Google Scholar
Bursac, Nikola; Rapp, Simon; Waldeier, Lukas; Wagenmann, Steffen; Albers, Albert; Deiss, Magnus; Hettich, Volker (2021): Anforderungsmanagement in der Agilen Entwicklung Mechatronischer Systeme - ein Widerspruch in sich?, pp. 283296. https://dx.doi.org/10.25368/2021.28.CrossRefGoogle Scholar
Davis, A. M. (2003): The art of requirements triage. In Computer 36 (3), pp. 4249. https://dx.doi.org/10.1109/MC.2003.1185216.CrossRefGoogle Scholar
Desai, Preyas; Kekre, Sunder; Radhakrishnan, Suresh; Srinivasan, Kannan (2001): Product Differentiation and Commonality in Design: Balancing Revenue and Cost Drivers. In Management Science 47 (1), pp. 3751. https://dx.doi.org/10.1287/mnsc.47.1.37.10672.Google Scholar
Dumitrescu, Roman; Albers, Albert; Riedel, Oliver; Stark, Rainer; Gausemeier, Jürgen (2021): Engineering in Deutschland – Status quo in Wirtschaft und Wissenschaft. Ein Beitrag zum Advanced Systems Engineering. Edited by acatech - Deutsche Akademie der Technikwissenschaften.Google Scholar
Ebel, Björn (2015): Modellierung von Zielsystemen in der interdisziplinären Produktentstehung = Modeling of System of Objectives in Interdisciplinary Product Engineering. Karlsruhe.Google Scholar
Hinterhuber, Hans (1993): Paradigmenwechsel. Vom Denken in Funktionen zum Denken in Prozessen. In : Journal der Betriebswirtschaft, pp. 5875.Google Scholar
IEEE (1998): IEEE Recommended Practice for Software Requirements Specifications. s.l.: IEEE / Institute of Electrical and Electronics Engineers Incorporated.Google Scholar
Klein, Dominik; Tran-Gia, Phuoc; Hartmann, Matthias (2013): Big Data. In Informatik Spektrum 36 (3), pp. 319323. https://dx.doi.org/10.1007/s00287-013-0702-3.CrossRefGoogle Scholar
Liu, Sophia B.; Palen, Leysia (2009): Spatiotemporal mashups: A survey of current tools to inform next generation crisis support. In ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management.Google Scholar
Maalej, Walid; Nayebi, Maleknaz; Johann, Timo; Ruhe, Guenther (2016): Toward Data-Driven Requirements Engineering. In IEEE Softw. 33 (1), pp. 4854. https://dx.doi.org/10.1109/MS.2015.153.CrossRefGoogle Scholar
Moe, Nils Brede; Aurum, Aybüke; Dybå, Tore (2012): Challenges of shared decision-making: A multiple case study of agile software development. In Information and Software Technology 54 (8), pp. 853865. https://dx.doi.org/10.1016/j.infsof.2011.11.006.Google Scholar
Mosavi, Amir; Vaezipour, A. (2013): Developing Effective Tools for Predictive Analytics and Informed Decisions. In Technical Report 2013, University of Tallinn.Google Scholar
Nayebi, Maleknaz; Ruhe, Guenther (2015): Analytical Product Release Planning. In : The Art and Science of Analyzing Software Data: Elsevier, pp. 555589.Google Scholar
Pagano, Dennis; Maalej, Walid (2013): User feedback in the appstore: An empirical study. In : 2013 21st IEEE International Requirements Engineering Conference (RE). Rio de Janeiro, Brazil, 15.07.2013 - 19.07.2013: IEEE, pp. 125134.Google Scholar
Russom, Philip (2011): Big Data Analytics. Edited by TDWI Research - Best Practices Report.Google Scholar
Shmueli; Koppius (2011): Predictive Analytics in Information Systems Research. In MIS Quarterly 35 (3), p. 553. https://dx.doi.org/10.2307/23042796.CrossRefGoogle Scholar
van Lamsweerde, A. (2000): Goal-oriented requirements engineering: a guided tour. In : Proceedings Fifth IEEE International Symposium on Requirements Engineering. Toronto, Ont., Canada, 27-31 Aug. 2001: IEEE Comput. Soc, pp. 249262.Google Scholar
Wu, Xindong; Zhu, Xingquan; Wu, Gong-Qing; Ding, Wei (2014): Data mining with big data. In IEEE Trans. Knowl. Data Eng. 26 (1), pp. 97107. https://dx.doi.org/10.1109/TKDE.2013.109.Google Scholar
Zakir, Jasmine (2015): Big Data Analytics, pp. 8190. https://dx.doi.org/10.48009/2_iis_2015_81-90.CrossRefGoogle Scholar