Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T11:12:39.036Z Has data issue: false hasContentIssue false

Strength Analysis of Structurally Optimized Aluminium-Composite Tubular Lap Joints

Published online by Cambridge University Press:  26 May 2022

M. Jäger*
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
S. Wartzack
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Truss structures are a stiff, economical, and efficient lightweight design, the limiting factor of these structures are usually the load transfer elements. This paper presents an analytical design method for optimized adhesive tubular lap joints between CFRP tubes and aluminium inserts. The analytically optimized design agrees very well with the numerical simulations and experimental results. Although the experiments show a highly non-linear behaviour, where a linear elastic correlation is expected, the total load capacity is only reached when the adhesive is fully plasticised.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Adams, R.D. and Peppiatt, N.A. (1977), “Stress Analysis of Adhesive Bonded Tubular Lap Joints”, The Journal of Adhesion, Vol. 9 No. 1, pp. 118. 10.1080/00218467708075095.CrossRefGoogle Scholar
Albiez, M.F. (2016), “Zur statischen Tragfähigkeit geklebter Kreishohlprofilverbindungen im Stahlbau”, Dissertation, Karlsruher Institut für Technologie, Karlsruhe, 2016. 10.5445/KSP/1000057648.Google Scholar
Ansys, I. (2021), “Ansys Mechanical. Finite Element Analysis (FEA) Software for Structural Engineering”, available at: https://www.ansys.com/products/structures/ansys-mechanical.Google Scholar
GmbH, CG TEC (2021), “CFK - Profiles and connectors”, available at: https://www.carbonscout-shop.de/Profiles-and-connectors.html.Google Scholar
Habenicht, G. (2009), Kleben: Grundlagen, Technologien, Anwendungen, 6th ed., Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-540-85266-7.Google Scholar
Hart-Smith, L.J. (1973), Adhesive-bonded double-lap joints, Hampton, Virginia.Google Scholar
Jäger, M., Völkl, H. and Wartzack, S. (2020), “Konzept einer CAE-Methode zur systematischen Auslegung beanspruchungsgerechter; kurzfaserverstärkter AM-Fachwerksknoten für hochoptimierte Fachwerke”, in Proceedings of the 31st Symposium Design for X (DFX2020), 16-17 December 2020, The Design Society, pp. 131140. 10.35199/dfx2020.14.Google Scholar
Klein, D. (2017), Ein simulationsbasierter Ansatz für die beanspruchungsgerechte Auslegung endlosfaserverstärkter Faserverbundstrukturen, Konstruktionstechnik/Maschinenelemente, Vol. 439, 1. Auflage, VDI Verlag, Düsseldorf. 10.51202/9783186439017.Google Scholar
Lubkin, J.L. and Reissner, E. (1956), “Stress distributions and design data for adhesive lap joints between circular tubes”, Journal of Applied Mechanics, No. 78, pp. 12131221.Google Scholar
Nemeş, O., Lachaud, F. and Mojtabi, A. (2006), “Contribution to the study of cylindrical adhesive joining”, International Journal of Adhesion and Adhesives, Vol. 26 No. 6, pp. 474480. 10.1016/j.ijadhadh.2005.07.009.Google Scholar
Pasternak, H., Hoch, H.-U. and Füg, D. (2010), Stahltragwerke im Industriebau, EBL-Schweitzer, Ernst, Berlin. 10.1002/9783433600535.Google Scholar
Pramanik, A., Basak, A.K., Dong, Y., Sarker, P.K., Uddin, M.S., Littlefair, G., Dixit, A.R. and Chattopadhyaya, S. (2017), “Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review”, Composites Part A: Applied Science and Manufacturing, Vol. 101, pp. 129. 10.1016/j.compositesa.2017.06.007.Google Scholar
Schürmann, H. (2007), Konstruieren mit Faser-Kunststoff-Verbunden, VDI-Buch, 2., bearbeitete und erweiterte Auflage, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-540-72190-1.Google Scholar
Schütze, R. (1997), “Lightweight carbon fibre rods and truss structures”, Materials & Design, Vol. 18 No. 4-6, pp. 231238. 10.1016/S0261-3069(97)00056-3.CrossRefGoogle Scholar
Siebert, M. (2006), Untersuchung der mechanischen Eigenschaften injektionsgefügter Rundsteckverbindungen, Zugl.: Kassel, Univ., Diss., 2006, Schriftenreihe des Instituts für Werkstofftechnik Kassel, Shaker, Aachen.Google Scholar
Volkersen, O. (1938), “Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten”, in Luftfahrtforschung: Band 15, Vol. 15, pp. 4147.Google Scholar
Walbrun, S., Witzgall, C. and Wartzack, S. (2019), “A rapid CAE-based design method for modular hybrid truss structures”, Design Science, Vol. 5. 10.1017/dsj.2019.26.Google Scholar