Article contents
SIMULATION-DRIVEN DEVELOPMENT FOR COARSE COMMINUTION PROCESS - A CASE STUDY OF GEITA GOLD MINE, TANZANIA USING PLANTSMITH PROCESS SIMULATOR
Published online by Cambridge University Press: 27 July 2021
Abstract
A comminution process is a material size reduction and separation process which is primarily used in the aggregates and the minerals processing industry. Knowledge related to equipment’s operation, raw material properties, operational strategies, control system, maintenance, etc. is needed to design a capable plant. New needs are arising from the industry for existing operational crushing plants such as investigation for improvements, upscaling, and downscaling of the capacity. The paper presents an application of simulation-driven development for a crushing plant in an existing gold processing plant. Due to the change in ore characteristics and the need for optimizing the cost of operation, it is required to investigate the opportunities for improvement and alternative options for downscaling the capacity of the plant. A systematic process for configuring, developing, and evaluating alternative concepts using a process simulation tool is presented. The results show the process of generating knowledge for alternative crushing plant operation settings and how the choices can be selected and eliminated using boundary conditions. The evaluation presents possible improvements and alternative concepts with their opportunities and pitfalls.
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2021. Published by Cambridge University Press
References
- 3
- Cited by