Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T00:43:27.908Z Has data issue: false hasContentIssue false

Service centric design methodology for integrated robot-infrastructure systems

Published online by Cambridge University Press:  16 May 2024

Abhishek Gupta*
Affiliation:
Technische Universität Berlin, Germany
Dietmar Göhlich
Affiliation:
Technische Universität Berlin, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ongoing development of technology and AI facilitates the emergence of service robots in various application fields. Hence, the development of robot-infrastructure product-service systems (PSS) will become increasingly important. Based on the existing literature we propose a new methodological approach for a joint development of robot and infrastructure in the context of a socio-technical system with various stakeholders. We suggest digital models and physical prototypes to synchronize service and product development. The applicability is demonstrated for autonomous waste management robots.

Type
Systems Engineering and Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Albers, A., & Rapp, S. (2022). Model of SGE: System Generation Engineering as Basis for Structured Planning and Management of Development. In Design Methodology for Future Products (pp. 2746). Springer, Cham. https://doi.org/10.1007/978-3-030-78368-6_2CrossRefGoogle Scholar
Bender, B., & Gericke, K. (2021). Entwickeln der Anforderungsbasis: Requirements Engineering. In Pahl/Beitz Konstruktionslehre (pp. 169209). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57303-7_7CrossRefGoogle Scholar
Blessing, L. T. M., & Chakrabarti, A. (2009). DRM, a Design Research Methodology. http://83.136.219.140:8080/handle/123456789/89CrossRefGoogle Scholar
Bräutigam, J., Gupta, A., & Göhlich, D. (2022). Simulated Annealing-based Energy Efficient Route Planning for Urban Service Robots. In 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE. https://doi.org/10.1109/mmar55195.2022.9874325CrossRefGoogle Scholar
Cong, J., Chen, C.-H., &, et al. (2020). A holistic relook at engineering design methodologies for smart product-service systems development. Journal of Cleaner Production, 272, 122737. https://doi.org/10.1016/j.jclepro.2020.122737CrossRefGoogle Scholar
Ghim, Y.-G. (2023). A Product-Service System Approach for Designing Mobile Robots. Industrial Designers Society of America. https://www.researchgate.net/profile/Yong-Gyun-Ghim-2/publication/374163793Google Scholar
Göhlich, D., Bender, B., Fay, T.-A., & Gericke, K. (2021). Product Requirements Specification Process in Product Development. Proceedings of the Design Society, 1, 24592470. https://doi.org/10.1017/pds.2021.507CrossRefGoogle Scholar
Göhlich, D., & Fay, T.-A. (2021). Arbeiten mit Anforderungen: Requirements Management. In Pahl/Beitz Konstruktionslehre (pp. 211229). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57303-7_8CrossRefGoogle Scholar
Göhlich, D., Syré, A. M., van der Schoor, M. J., &, et al. (2022). Design Methodologies for Sustainable Mobility Systems. In Design Methodology for Future Products (pp. 123144). Springer, Cham. https://doi.org/10.1007/978-3-030-78368-6_7CrossRefGoogle Scholar
Grahle, A., Song, Y.-W., &, et al. (2020). Autonomous Shuttles for Urban Mobility on Demand Applications – Ecosystem Dependent Requirement Elicitation. Proceedings of the Design Society: DESIGN Conference, 1, 887896. https://doi.org/10.1017/dsd.2020.100Google Scholar
Gräßler, I., & Hentze, J. (2020). The new V-Model of VDI 2206 and its validation. At - Automatisierungstechnik, 68(5), 312324. https://doi.org/10.1515/auto-2020-0015CrossRefGoogle Scholar
Gräßler, I., & Hesse, P. (2022). Approach to Sustainability-Based Assessment of Solution Alternatives in Early Stages of Product Engineering. Proceedings of the Design Society, 2, 10011010. https://doi.org/10.1017/pds.2022.102CrossRefGoogle Scholar
Gräßler, I., & Pottebaum, J. (2022). From Agile Strategic Foresight to Sustainable Mechatronic and Cyber-Physical Systems in Circular Economies. In Design Methodology for Future Products (pp. 326). Springer, Cham. https://doi.org/10.1007/978-3-030-78368-6_1CrossRefGoogle Scholar
Guenat, S., Purnell, P., &, et al. (2022). Meeting sustainable development goals via robotics and autonomous systems. Nature Communications, 13(1), 3559. https://doi.org/10.1038/s41467-022-31150-5CrossRefGoogle ScholarPubMed
Gupta, A., Kremer, P., &, et al. (2022a). Intelligent Route Planning for Autonomous Service Robots using Communicating Smart Dustbins. In ICC 2022 - IEEE International Conference on Communications. IEEE. https://doi.org/10.1109/icc45855.2022.9838510CrossRefGoogle Scholar
Gupta, A., van der Schoor, M. J., &, et al. (2022b). Autonomous Service Robots for Urban Waste Management - Multiagent Route Planning and Cooperative Operation. IEEE Robotics and Automation Letters, 7(4), 89728979. https://doi.org/10.1109/lra.2022.3188900CrossRefGoogle Scholar
Halstenberg, F. A., Lindow, K., & Stark, R. (2019). Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering. Sustainability, 11(13), 3517. https://doi.org/10.3390/su11133517CrossRefGoogle Scholar
ISO/IEC/IEEE 15288 (2023-5). ISO/IEC/IEEE 15288:2023 - Systems and software engineering— System life cycle processes: Second Edition. The International Organization for Standardization.Google Scholar
Kaiser, L. (2014). Rahmenwerk zur Modellierung einer plausiblen Systemstruktur mechatronischer Systeme: Doktorarbeit. Universität Paderborn. https://core.ac.uk/download/pdf/50517459.pdfGoogle Scholar
Kjaer, L. L., Pigosso, D. C. A., &, et al. (2019). Product/service-systems for a Circular Economy: The Route to Decoupling Economic Growth from Resource Consumption? Journal of Industrial Ecology, 23(1), 2235. https://doi.org/10.1111/jiec.12747CrossRefGoogle Scholar
Kohl, J. L., van der Schoor, M. J., Syré, A. M., & Göhlich, D. (2020). Social Sustainability In The Development Of Service Robots. Proceedings of the Design Society: DESIGN Conference, 1, 19491958. https://doi.org/10.1017/dsd.2020.59Google Scholar
Kuhlenkötter, B., Wilkens, U., &, et al. (2017). New Perspectives for Generating Smart PSS Solutions – Life Cycle, Methodologies and Transformation. 2212-8271, 64, 217222. https://doi.org/10.1016/j.procir.2017.03.036Google Scholar
Mintrom, M., Sumartojo, S., Kulić, D., &, et al. (2022). Robots in public spaces: Implications for policy design. Policy Design and Practice, 5(2), 123139. https://doi.org/10.1080/25741292.2021.1905342CrossRefGoogle Scholar
Morelli, N. (2006). Developing new product service systems (PSS): methodologies and operational tools. Journal of Cleaner Production, 14(17), 14951501. https://doi.org/10.1016/j.jclepro.2006.01.023CrossRefGoogle Scholar
Ostermeier, M., Heimfarth, A., & Hübner, A. (2022). Cost-optimal truck-and-robot routing for last-mile delivery. Networks, 79(3), 364389. https://doi.org/10.1002/net.22030CrossRefGoogle Scholar
Pollak, A., Gupta, A., & and Göhlich, D. (2024). Optimized Operation Management With Predicted Filling Levels of the Litter Bins for a Fleet of Autonomous Urban Service Robots. IEEE Access, 12, 76897703. https://doi.org/10.1109/access.2024.3352436CrossRefGoogle Scholar
Rondini, A., Bertoni, M., & Pezzotta, G. (2020). At the origins of Product Service Systems: Supporting the concept assessment with the Engineering Value Assessment method. CIRP Journal of Manufacturing Science and Technology, 29, 157175. https://doi.org/10.1016/j.cirpj.2018.08.002CrossRefGoogle Scholar
Šabanović, S. (2010). Robots in Society, Society in Robots. International Journal of Social Robotics, 2(4), 439450. https://doi.org/10.1007/s12369-010-0066-7CrossRefGoogle Scholar
Saldierna, C., & Lino, M. (2010). The Design Research Methodology as a Framework for the Development of a Tool for Engineering Design Education. 12th International Conference on Engineering and Product Design Education - When Design Education and Design Research Meet, 298303. https://www.designsociety.org/publication/30186/Google Scholar
Song, W. (2017). Requirement management for product-service systems: Status review and future trends. Computers in Industry, 85, 1122. https://doi.org/10.1016/j.compind.2016.11.005CrossRefGoogle Scholar
Sostero, M. (2020). Automation and Robots in Services: Review of Data and Taxonomy (JRC Working Papers Series on Labour, Education and Technology 2020/14). Seville: European Commission, Joint Research Centre (JRC). https://www.econstor.eu/handle/10419/231346Google Scholar
Stark, R. (2022). Virtual Product Creation in Industry: The Difficult Transformation from IT Enabler Technology to Core Engineering Competence. Springer. https://link.springer.com/chapter/10.1007/978-3-662-64301-3_4 https://doi.org/10.1007/978-3-662-64301-3_4CrossRefGoogle Scholar
Tomiyama, T., Lutters, E., Stark, R., & Abramovici, M. (2019). Development capabilities for smart products. CIRP Annals, 68(2), 727750. https://doi.org/10.1016/j.cirp.2019.05.010CrossRefGoogle Scholar
Tukker, A. (2015). Product services for a resource-efficient and circular economy – a review. Journal of Cleaner Production, 97, 7691. https://doi.org/10.1016/j.jclepro.2013.11.049CrossRefGoogle Scholar
van der Schoor, M. J., & Göhlich, D. (2023). Integrating sustainability in the design process of urban service robots. Frontiers in Robotics and AI, 10, 1250697. https://doi.org/10.3389/frobt.2023.1250697CrossRefGoogle ScholarPubMed
VDI 2206 (2021). Development of mechatronic and cyber-physical systems. Beuth-Verlag GmbH.Google Scholar
Walden, D. D., Roedler, G. J., & Forsberg, K. (2015). Incose Systems Engineering Handbook Version 4: Updating the Reference for Practitioners. INCOSE International Symposium, 25(1), 678686. https://doi.org/10.1002/j.2334-5837.2015.00089.xCrossRefGoogle Scholar
Wang, T., Yue, W., Yang, L., &, et al. (2023). A User Requirement Driven Development Approach for Smart Product-Service System of Elderly Service Robot. In D. Harris & W.-C. Li (Eds.), Lecture notes in computer science Lecture notes in artificial intelligence: Vol. 14018, Engineering psychology and cognitive ergonomics (pp. 533551). Springer. https://doi.org/10.1007/978-3-031-35389-5_37Google Scholar
Wang, Y., Blache, R., Zheng, , P., & Xu, X. (2018). A Knowledge Management System to Support Design for Additive Manufacturing Using Bayesian Networks. Journal of Mechanical Design, 140(5), Article 051701. https://doi.org/10.1115/1.4039201CrossRefGoogle Scholar
While, A. H., Marvin, S., & Kovacic, M. (2021). Urban robotic experimentation: San Francisco, Tokyo and Dubai. Urban Studies, 58(4), 769786. https://doi.org/10.1177/0042098020917790CrossRefGoogle Scholar
Zou, Y., Kim, D., &, et al. (2022). Towards robot modularity — A review of international modularity standardization for service robots, 148, 103943. https://doi.org/10.1016/j.robot.2021.103943Google Scholar