Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T11:21:17.791Z Has data issue: false hasContentIssue false

Parameters Proposed for Sustainability Assessment of Biocomposite Based Rigid Packaging

Published online by Cambridge University Press:  26 May 2022

V. Srivastava*
Affiliation:
Indian Institute of Technology Delhi, India
S. Singh
Affiliation:
Indian Institute of Technology Delhi, India
D. Das
Affiliation:
Indian Institute of Technology Delhi, India

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sustainability of rigid packaging can be increased by using biocomposites in packaging. Existing frameworks have some limitations such as are made to assess a few aspects, conventional packaging parameters are considered, etc. Biocomposite has a slightly different scenario at various life cycle stages, like the end-of-life cycle process. To assess the sustainability of biocomposite rigid packaging, we must consider parameters related to the biocomposite-based rigid packaging materials life cycle. These are categorised into different aspects of sustainability and life cycle phases.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Campbell, G. A., & Vallejo, E. (2015). Primary packaging considerations in developing medicines for children: oral liquid and powder for constitution. Journal of pharmaceutical sciences, 104(1), 5262.CrossRefGoogle ScholarPubMed
Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634643. 10.1016/j.tifs.2008.07.003CrossRefGoogle Scholar
2nd National Conference on plastic packaging the sustainable choice (2016). Plastic Industry Knowledge and Strategic Partner. https://ficci.in/spdocument/20690/plastic-packaging-report.pdfGoogle Scholar
Mordor Intelligence, Industry Report (2019), Global plastic packaging market, Hyderabad, India.Google Scholar
Food Print, (2021), The Environmental Impact of Food Packagi GRACE Communications FoundationGoogle Scholar
Qualman, D. (2017, December 17). Global plastics production, 1917 to 2050. Darrin Qualman. https://www.darrinqualman.com/global-plastics-production/Google Scholar
Srivastava, V., Singh, S., & Das, D. (2022). Biodegradable Fibre-Based Composites as Alternative Materials for Sustainable Packaging Design. In Scholz, S. G., Howlett, R. J., & Setchi, R. (Eds.), Sustainable Design and Manufacturing (pp. 8798). Springer. 10.1007/978-981-16-6128-0_9CrossRefGoogle Scholar
Sustainable Packaging Coalition's SPC Bioplastics Converge 2017, to be held May 31-June 1. (2017, February 18). SPC. https://sustainablepackaging.org/sustainable-packaging-coalitions-spc-bioplastics-converge-2017-held-may-31-june-1/Google Scholar
Dr. Love-Ese Chile, (2019) Composting biodegradable plastics: A technical review, Canada.Google Scholar
Lamberti, F. M., Román-Ramírez, L. A., & Wood, J. (2020). Recycling of bioplastics: Routes and benefits. Journal of Polymers and the Environment, 28(10), 25512571.CrossRefGoogle Scholar
Bohlmann, G. M. (2004). Biodegradable packaging lifecycle assessment. Environmental Progress, 23(4), 342346.CrossRefGoogle Scholar
David, G., Croxatto Vega, G., Sohn, J., Nilsson, A. E., Hélias, A., Gontard, N., & Angellier-Coussy, H. (2021). Using life cycle assessment to quantify the environmental benefit of upcycling vine shoots as fillers in biocomposite packaging materials. The International Journal of Life Cycle Assessment, 26(4), 738752. 10.1007/s11367-020-01824-7Google Scholar
Lorite, G. S., Rocha, J. M., Miilumäki, N., Saavalainen, P., Selkälä, T., Morales-Cid, G., & Toth, , G. (2017a). Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT, 75, 305315.Google Scholar
Shen, L., & Patel, M. K. (2008). Life Cycle Assessment of Polysaccharide Materials: A Review. Journal of Polymers and the Environment, 16(2), 154–167. 10.1007/s10924-008-0092-9CrossRefGoogle Scholar
Sun, J.-P., Calahoo, C., Brown, C., & White, M. A. (2021). Environmental impact assessment of milk packaging in Canada. Journal of Cleaner Production, 325, 129347. 10.1016/j.jclepro.2021.129347Google Scholar
Ahamed, A., Veksha, A., Yin, K., Weerachanchai, P., Giannis, A., & Lisak, G. (2020). Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. Journal of Hazardous Materials, 390, 121449. 10.1016/j.jhazmat.2019.121449CrossRefGoogle ScholarPubMed
Abejón, R., Laso, J., Margallo, M., Aldaco, R., Blanca-Alcubilla, G., Bala, A., & Fullana-i-Palmer, P. (2020). Environmental impact assessment of the implementation of a Deposit-Refund System for packaging waste in Spain: A solution or an additional problem? Science of The Total Environment, 721, 137744. 10.1016/j.scitotenv.2020.137744CrossRefGoogle ScholarPubMed
Ingrao, C., Lo Giudice, A., Bacenetti, J., Mousavi Khaneghah, A., Sant'Ana, A. S., Rana, R., & Siracusa, V. (2015). Foamy polystyrene trays for fresh-meat packaging: Life-cycle inventory data collection and environmental impact assessment. Food Research International, 76, 418426. 10.1016/j.foodres.2015.07.028CrossRefGoogle ScholarPubMed
Suwanmanee, U., Varabuntoonvit, V., Chaiwutthinan, P., Tajan, M., Mungcharoen, T., & Leejarkpai, T. (2013). Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: Cradle to consumer gate. The International Journal of Life Cycle Assessment, 18(2), 401417. 10.1007/s11367-012-0479-7Google Scholar
Mendes, A. C., & Pedersen, G. A. (2021). Perspectives on sustainable food packaging:– is bio-based plastics a solution? Trends in Food Science & Technology, 112, 839846. 10.1016/j.tifs.2021.03.049Google Scholar
Guo, M., Trzcinski, A. P., Stuckey, D. C., & Murphy, R. J. (2011). Anaerobic digestion of starch–polyvinyl alcohol biopolymer packaging: Biodegradability and environmental impact assessment. Bioresource technology, 102(24), 1113711146. 10.1016/j.biortech.2011.09.061Google ScholarPubMed
Singh, S., Kumar, J., & Rao, P. V. M. (2018). Environmental impact assessment framework for product packaging. Management of Environmental Quality: An International Journal, 29(3), 499515. 10.1108/MEQ-10-2017-0105Google Scholar
Williams, H., & Wikström, F. (2011). Environmental impact of packaging and food losses in a life cycle perspective: A comparative analysis of five food items. Journal of Cleaner Production, 19(1), 4348. 10.1016/j.jclepro.2010.08.008CrossRefGoogle Scholar
Lorite, G. S., Rocha, J. M., Miilumäki, N., Saavalainen, P., Selkälä, T., Morales-Cid, G., Gonçalves, M. P., Pongrácz, E., Rocha, C. M. R., & Toth, G. (2017b). Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT, 75, 305315. 10.1016/j.lwt.2016.09.004CrossRefGoogle Scholar
Korol, J., Burchart-Korol, D., & Pichlak, M. (2016). Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. Journal of Cleaner Production, 113, 144152. 10.1016/j.jclepro.2015.11.101Google Scholar
Molins, G., Álvarez, M. D., Garrido, N., Macanás, J., & Carrillo, F. (2018). Environmental Impact Assessment of Polylactide(PLA)/Chicken Feathers Biocomposite Materials. Journal of Polymers and the Environment, 26(3), 873884. 10.1007/s10924-017-0982-9CrossRefGoogle Scholar
Salwa, H. N., Sapuan, S. M., Mastura, M. T., & Zuhri, M. Y. M. (2020). Life Cycle Assessment of Sugar Palm Fibre Reinforced-Sago Biopolymer Composite Takeout Food Container. Applied Sciences, 10(22), 7951. 10.3390/app10227951Google Scholar
Grönman, K., Soukka, R., Järvi-Kääriäinen, T., Katajajuuri, J. M., Kuisma, M., Koivupuro, H. K., … & Linnanen, L. (2013). Framework for sustainable food packaging design. Packaging Technology and Science, 26(4), 187200.Google Scholar
Azzi, A., Battini, D., Persona, A., & Sgarbossa, F. (2012). Packaging Design: General Framework and Research Agenda: ROADMAP FOR PACKAGING DESIGN STUDIES AND RESEARCH. Packaging Technology and Science, 25(8), 435456. 10.1002/pts.993Google Scholar
Verghese, K., Lewis, H., & Fitzpatrick, L. (2012). Packaging for Sustainability. Springer Science & Business Media.CrossRefGoogle Scholar
Afif, K., Rebolledo, C., & Roy, J. (2021). Drivers, barriers and performance outcomes of sustainable packaging: a systematic literature review. British Food Journal.Google Scholar
Colwill, J. A., Wright, E. I., & Rahimifard, S. (2012). A holistic approach to design support for bio-polymer based packaging. Journal of Polymers and the Environment, 20(4), 11121123. 10.1007/s10924-012-0545-zCrossRefGoogle Scholar