Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:32:11.889Z Has data issue: false hasContentIssue false

A Musculoskeletal Human Model-Based Approach for Evaluating Support Concepts of Exoskeletons for Selected Use Cases

Published online by Cambridge University Press:  26 May 2022

C. Molz*
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Z. Yao
Affiliation:
Helmut Schmidt University, Germany
J. Sänger
Affiliation:
Karlsruhe Institute of Technology, Germany
T. Gwosch
Affiliation:
Karlsruhe Institute of Technology, Germany
R. Weidner
Affiliation:
Helmut Schmidt University, Germany University of Innsbruck, Austria
S. Matthiesen
Affiliation:
Karlsruhe Institute of Technology, Germany
S. Wartzack
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
J. Miehling
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents an approach for evaluating exoskeleton support concepts through biomechanical analyses on a musculoskeletal human model. By simplifying the support forces of an exoskeleton as external forces, different support concepts can be biomechanically evaluated for the respective use case without concrete design specifications of the exoskeleton. This enables an estimation of the resulting relief and strain on the human body in the early stages of exoskeleton development. To present the approach, the use case of working at and above head height with a power tool is chosen.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Argubi-Wollesen, A. and Weidner, R. (2018), “Adapting to Users’ Physiological Preconditions and Demands by the Use of Biomechanical Analysis”, in Karafillidis, A. and Weidner, R. (Eds.), Developing Support Technologies, Biosystems & Biorobotics, Springer International Publishing, Cham, pp. 4761.Google Scholar
Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E. and Thelen, D.G. (2007), “OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement”, IEEE Transactions on Biomedical Engineering, Vol. 54 No. 11, pp. 19401950. 10.1109/TBME.2007.901024.CrossRefGoogle Scholar
ISO/TR 16982 (2002-06), Ergonomics of human-system interaction - Usability methods supporting human-centred design.Google Scholar
Ferrati, F., Bortoletto, R. and Pagello, E. (2013), “Virtual Modelling of a Real Exoskeleton Constrained to a Human Musculoskeletal Model”, in Lepora, N.F. (Ed.), Biomimetic and biohybrid systems: Second international conference, Living Machines 2013, London, UK, July 29-August 2, 2013 proceedings, 2013, Berlin, Heidelberg, Springer, Heidelberg, pp. 96–107.Google Scholar
Fournier, B.N., Lemaire, E.D., Smith, Andrew J. J. Doumit, Smith and, M. (2018), “Modeling and Simulation of a Lower Extremity Powered Exoskeleton”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 26 No. 8, pp. 15961603. 10.1109/TNSRE.2018.2854605.Google ScholarPubMed
Fritzsche, L., Galibarov, P., Gärtner, C., Bornmann, J., Damsgaard, M., Wall, R., Schirrmeister, B., Gonzalez-Vargas, J., Pucci, D., Maurice, P., Ivaldi, S. and Babič, J. (2021), “Assessing the efficiency of exoskeletons in physical strain reduction by biomechanical simulation with AnyBody Modeling System”, Wearable Technologies, Vol. 2. 10.1017/wtc.2021.5.CrossRefGoogle Scholar
Gao, Y., Arfat, Y., Wang, H. and Goswami, N. (2018), “Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures”, Frontiers in Physiology. 10.3389/fphys.2018.00235.Google Scholar
Hill, A.V. (1938), “The heat of shortening and the dynamic constants of muscle”, Proceedings of the Royal Society of London. Series B - Biological Sciences, Vol. 126 No. 843, pp. 136195. 10.1098/rspb.1938.0050.Google Scholar
Khamar, M., Edrisi, M. and Zahiri, M. (2019), “Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction”, MethodsX, Vol. 6, pp. 18381846. 10.1016/j.mex.2019.08.014.Google ScholarPubMed
Linaker, C.H. and Walker-Bone, K. (2015), “Shoulder disorders and occupation”, Best Practice & Research Clinical Rheumatology, Vol. 29 No. 3, pp. 405423. 10.1016/j.berh.2015.04.001.CrossRefGoogle ScholarPubMed
Matthiesen, S., Germann, R., Schmidt, S., Hölz, K. and Uhl, M. (2018), “Prozessmodell zur anwendungsorientierten Entwicklung von Power-Tools”, in Karafillidis, A. and Weidner, R. (Eds.), Developing Support Technologies, Biosystems & Biorobotics, Springer International Publishing, Cham.Google Scholar
Miehling, J. (2019), “Musculoskeletal modeling of user groups for virtual product and process development”, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 22 No. 15, pp. 12091218. 10.1080/10255842.2019.1651296.CrossRefGoogle ScholarPubMed
Miehling, J., Wolf, A. and Wartzack, S. (2018), “Musculoskeletal Simulation and Evaluation of Support System Designs”, in Karafillidis, A. and Weidner, R. (Eds.), Developing Support Technologies, Biosystems & Biorobotics, Vol. 23, Springer International Publishing, Cham, pp. 219227.CrossRefGoogle Scholar
Otten, B.M., Weidner, R. and Argubi-Wollesen, A. (2018), “Evaluation of a Novel Active Exoskeleton for Tasks at or Above Head Level”, IEEE Robotics and Automation Letters, Vol. 3 No. 3, pp. 24082415. 10.1109/LRA.2018.2812905.CrossRefGoogle Scholar
Scherb, D., Kurz, M., Fleischmann, C., Wolf, A., Sesselmann, S. and Miehling, J. (2020), “Patientenspezifische Modellierung des passiven Bewegungsapparates als Grundlage für die präoperative Abschätzung postoperativer Folgeerscheinungen des endoprothetischen Hüftgelenkersatzes”, in Proceedings of the 31st Symposium Design for X (DFX2020), 16-17 December 2020, The Design Society, pp. 1–10.Google Scholar
Tröster, M., Wagner, D., Müller-Graf, F., Maufroy, C., Schneider, U. and Bauernhansl, T. (2020), “Biomechanical Model-Based Development of an Active Occupational Upper-Limb Exoskeleton to Support Healthcare Workers in the Surgery Waiting Room”, International Journal of Environmental Research and Public Health, Vol. 17 No. 14, p. 5140. 10.3390/ijerph17145140.CrossRefGoogle ScholarPubMed
Wolf, A., Krüger, D., Miehling, J. and Wartzack, S. (2019), “Approaching an ergonomic future: An affordance-based interaction concept for digital human models”, Procedia CIRP, Vol. 84, pp. 520525. 10.1016/j.procir.2019.03.198.CrossRefGoogle Scholar
Yao, Z., Linnenberg, C., Weidner, R. and Wulfsberg, J. (2019), “Development of A Soft Power Suit for Lower Back Assistance*”, paper presented at 2019 International Conference on Robotics and Automation (ICRA).Google Scholar
Zajac, F.E. (1989), “Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control”, Critical reviews in biomedical engineering, Vol. 17 No. 4.Google ScholarPubMed
Zhou, L., Li, Y. and Bai, S. (2017), “A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation”, Robotics and Autonomous Systems, Vol. 91, pp. 337347. 10.1016/j.robot.2016.12.012.CrossRefGoogle Scholar