Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T18:17:59.190Z Has data issue: false hasContentIssue false

MODULAR MAINTENANCE DECISION ARCHITECTURE

Published online by Cambridge University Press:  19 June 2023

Julie Krogh Agergaard*
Affiliation:
Technical University of Denmark
Kristoffer Wernblad Sigsgaard
Affiliation:
Technical University of Denmark
Niels Henrik Mortensen
Affiliation:
Technical University of Denmark
Simon Didriksen
Affiliation:
Technical University of Denmark
Kasper Barslund Hansen
Affiliation:
Technical University of Denmark
Jingrui Ge
Affiliation:
Technical University of Denmark
*
Agergaard, Julie Krogh, Technical University of Denmark, Denmark, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The operation of large production assets requires many decisions from the acquisition and design of new assets to the choice of lubricant for a specific piece of equipment. The decisions made in maintenance have a direct effect on the management of the production process, making it important to ensure correct maintenance decision making. However, studies on maintenance decision making tend to focus on smaller areas of decisions being made in a process, but rarely the entire process. To introduce more studies that consider the entire maintenance process, this paper proposes using a modular Maintenance Decision Architecture. The paper introduces a framework for structuring information sources into standardized information modules and mapping them to maintenance decisions made across the entire organization. The application of approaches from product, system, and service engineering are used to support the management of the complexities of maintenance of large production facilities.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Agergaard, Julie K., Sigsgaard, K. V., Mortensen, N. H., Ge, J., & Hansen, K. B. (2022a). Quantifying the impact of early-stage maintenance clustering. Journal of Quality in Maintenance Engineering. https://doi.org/10.1108/JQME-07-2021-0056/FULL/HTMLGoogle Scholar
Agergaard, Julie K., Sigsgaard, K. V., Mortensen, N. H., Ge, J., & Hansen, K. B. (2022b). Modularizing Maintenance for Improved Production Impact Clarification. Proceedings of the Design Society, 2, 24132422. https://doi.org/10.1017/PDS.2022.244CrossRefGoogle Scholar
Agergaard, Julie Krogh, Sigsgaard, K. V., Mortensen, N. H., Ge, J., & Hansen, K. B. (2022). Systematic maintenance action modularization for improved initiative prioritization. 1313. https://doi.org/10.35199/norddesign2022.39Google Scholar
Bhat, M., Shah, S., Das, P., Kumar, P., Kulkarni, N., Ghaisas, S. S., & Reddy, S. S. (2013). PREMΛP: Knowledge Driven Design of Materials and Engineering Process. 13151329. https://doi.org/10.1007/978-81-322-1050-4_105Google Scholar
Blessing, L. T. M., & Chakrabarti, A. (2009). DRM, a design research methodology. In DRM, a Design Research Methodology. Springer. https://doi.org/10.1007/978-1-84882-587-1CrossRefGoogle Scholar
Cenamor, J., Rönnberg Sjödin, D., & Parida, V. (2017). Adopting a platform approach in servitization: Leveraging the value of digitalization. International Journal of Production Economics, 192, 5465. https://doi.org/10.1016/j.ijpe.2016.12.033CrossRefGoogle Scholar
Chilamkurti, N., Torabi, T., & Elhdad, R. (2014). Ontology-based framework for maintenance activity analysis and support: A case study for petroleum plant. International Journal of Systems Assurance Engineering and Management, 5(1), 8498. https://doi.org/10.1007/S13198-013-0198-XCrossRefGoogle Scholar
Coussement, K., & Benoit, D. F. (2021). Interpretable data science for decision making. Decision Support Systems, 150. https://doi.org/10.1016/J.DSS.2021.113664CrossRefGoogle Scholar
Dansk Standard. (2017). DS/EN 13306: Maintenance Terminology.Google Scholar
de Mattos, C. S., Fettermann, D. C., & Cauchick-Miguel, P. A. (2021). Service modularity: literature overview of concepts, effects, enablers, and methods. Service Industries Journal, 41(15–16), 10071028. https://doi.org/10.1080/02642069.2019.1572117CrossRefGoogle Scholar
Didriksen, S., Hansen, K. B., Sigsgaard, K. V., Mortensen, N. H., Agergaard, J. K., & Ge, J. (2022). Utilising failure history to improve maintenance planning. 1212. https://doi.org/10.35199/NORDDESIGN2022.42Google Scholar
Eissens-van der Laan, M., Broekhuis, M., van Offenbeek, M., & Ahaus, K. (2016). Service decomposition: a conceptual analysis of modularizing services. International Journal of Operations and Production Management, 36(3), 308331. https://doi.org/10.1108/IJOPM-06-2015-0370/FULL/HTMLCrossRefGoogle Scholar
Ghasemaghaei, M., & Turel, O. (2022). The Duality of Big Data in Explaining Decision-Making Quality. Journal of Computer Information Systems. https://doi.org/10.1080/08874417.2022.2125103Google Scholar
Hodkiewicz, M., & Ho, M. T. W. (2016). Cleaning historical maintenance work order data for reliability analysis. Journal of Quality in Maintenance Engineering, 22(2), 146163. https://doi.org/10.1108/JQME-04-2015-0013/FULL/HTMLCrossRefGoogle Scholar
Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338345. https://doi.org/10.1016/J.JBUSRES.2016.08.007CrossRefGoogle Scholar
Johnson, M., Roehrich, J. K., Chakkol, M., & Davies, A. (2021). Reconciling and reconceptualising servitization research: drawing on modularity, platforms, ecosystems, risk and governance to develop mid-range theory. International Journal of Operations and Production Management, 41(5), 465493. https://doi.org/10.1108/IJOPM-08-2020-0536CrossRefGoogle Scholar
Meyer, M. H., & Utterback, J. M. (1992). The Product Family and the Dynamics of Core Capability. Sloan Management Review, 34(3), 2947.Google Scholar
Mortensen, N. H., Bertram, C. A., & Lundgaard, R. (2019). Achieving long-term modularization benefits: A small- and medium-sized enterprise study. Concurrent Engineering Research and Applications, 27(1), 1427. https://doi.org/10.1177/1063293X18803145CrossRefGoogle Scholar
Mortensen, N. H., Hansen, C. L., Løkkegaard, M., & Hvam, L. (2016). Assessing the cost saving potential of shared product architectures. Concurrent Engineering Research and Applications, 24(2), 153163. https://doi.org/10.1177/1063293X15624133CrossRefGoogle Scholar
Otto, K., Hölttä-Otto, K., Simpson, T. W., Krause, D., Ripperda, S., & Moon, S. K. (2016). Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development. Journal of Mechanical Design, Transactions of the ASME, 138(7). https://doi.org/10.1115/1.4033654CrossRefGoogle Scholar
Ruschel, E., Santos, E. A. P., & Loures, E. de F. R. (2017). Industrial maintenance decision-making: A systematic literature review. Journal of Manufacturing Systems, 45, 180194. https://doi.org/10.1016/j.jmsy.2017.09.003CrossRefGoogle Scholar
Selva, D., Cameron, B., & Crawley, E. (2016). Patterns in System Architecture Decisions. Systems Engineering, 19(6), 477497. https://doi.org/10.1002/SYS.21370CrossRefGoogle Scholar
Sigsgaard, Kristoffer V;, Agergaard, J. K.;, Bertram, C. A.;, Mortensen, N. H.;, Soleymani, I.;, Khalid, W.;, Hansen, K. B.;, Mueller, G. O., Sigsgaard, K. V, Bertram, J. K., Mortensen, C. A., Soleymani, N. H., Khalid, I., Hansen, W., Mueller, , &, Agergaard, J. K., Bertram, C. A., Mortensen, N. H., Soleymani, I., … Hansen, K. B. (2020). Structuring and Contextualizing Historical Data for Decision Making in Early Development. Proceedings of the Design Society: DESIGN Conference, 1, 393402. https://doi.org/10.1017/DSD.2020.113Google Scholar
Sigsgaard, Kristoffer Vandrup, Soleymani, I., Mortensen, N. H., Khalid, W., & Hansen, K. B. (2022). Toward a framework for a maintenance architecture. Journal of Quality in Maintenance Engineering, 28(2), 474490. https://doi.org/10.1108/JQME-01-2020-0004CrossRefGoogle Scholar
Simpson, T. W., Jiao, J. R., Siddique, Z., & Hölttä-Otto, K. (2014). Advances in product family and product platform design: Methods & applications. Springer. https://doi.org/10.1007/978-1-4614-7937-6Google Scholar
Stark, J. (2016). Product Data (Vol. 2, Issue Volume 2). https://doi.org/10.1007/978-3-319-24436-5_8Google Scholar
Tuunanen, T., Salo, M., & Li, F. (2022). Modular Service Design of Information Technology-Enabled Services. Journal of Service Research. https://doi.org/10.1177/10946705221082775Google Scholar
Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research Policy, 24(3), 419440. https://doi.org/10.1016/0048-7333(94)00775-3CrossRefGoogle Scholar
Ulrich, K., & Robertson, D. (1998). Planning for Product Platforms. Sloan Management Review, 39(4), 1931.Google Scholar