Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T21:50:41.123Z Has data issue: false hasContentIssue false

Modeling of an Interface Between System Models and FEM Models for the Support of Model-Based Development in Modular Lightweight Design for Aircraft Cabins

Published online by Cambridge University Press:  26 May 2022

L. Schwan*
Affiliation:
Hamburg University of Technology, Germany
M. Hanna
Affiliation:
Hamburg University of Technology, Germany
J. Schwenke
Affiliation:
Hamburg University of Technology, Germany
D. Krause
Affiliation:
Hamburg University of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The modular lightweight design attempts to reconcile the partially conflicting goals between modularization and lightweight design in order to establish a harmonized modular hybrid design. This requires a close exchange of the resulting development data between the two areas. In this contribution a concept for an interface for the data exchange between system models and FEM models is presented and successfully implemented in the Cameo Systems Modeler and applied to examples from the aircraft cabin. With the interface the homogenization step of modular lightweight design can be performed.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Albers, A., Bursac, N., Scherer, H., Birk, C., Powelske, J. et al. . (2019), “Model-based systems engineering in modular design”, Design Science, Vol. 5, No. 17. 10.1017/dsj.2019.15CrossRefGoogle Scholar
Beckmann, G., Gebhardt, N., Bahns, T. and Krause, D. (2016), “Approach to Transfer Methods for Developing Modular Product Families into Practice”, Proceedings of the DESIGN 2016 / 14th International Design Conference, Dubrovnik, Croatia, May 16-19, 2016, The Design Society, Glasgow, pp. 11851194.Google Scholar
Cicconi, P., Raffaeli, R., Marchionne, M., Germani, M. (2018), “A model-based simulation approach to support the product configuration and optimization of gas turbine ducts”, Computer-Aided Design & Applications, Vol. 15, pp. 807818. 10.1080/16864360.2018.1462564CrossRefGoogle Scholar
Dambietz, F. M., Rennpferdt, C., Hanna, M. and Krause, D. (2021a), “Using MBSE for the Enhancement of Consistency and Continuity in Modular Product-Service-System Architectures”, Systems, Vol. 9, No. 3. 10.3390/systems9030063CrossRefGoogle Scholar
Dambietz, F. M., Greve, E., Krause, D. (2021b): “Simulation-based performance analysis for future-robust modular product architectures”, Proceedings of the 23rd International Conference on Engineering Design (ICED21), Gothenburg, Sweden, August 16-20, 2021, pp. 26712680. 10.1017/pds.2021.528Google Scholar
Eckert, C.M., Wynn, D. C., Maier, J. F., Albers, A., Bursac, N. et al. . (2017), “On the integration of product and process models in engineering design”, Design Science, Vol. 3 No. 3. http://doi.org/10.1017/dsj.2017.2CrossRefGoogle Scholar
Hanna, M., Schwenke, J. and Krause, D. (2020a), “Inconsistency management for product families with many variants through a model-based approach in modular lightweight design”, Proceedings of the DESIGN 2020 / 17th International Design Conference, Cavtat, Croatia, October 26-29, 2020, The Design Society, Glasgow, pp. 917926. 10.1017/dsd.2020.309Google Scholar
Hanna, M., Schwenke, J., Heyden, E., Laukotka, F. and Krause, D. (2020b), “Neue Trends in der Flugzeugkabinenentwicklung”, In: Krause, D., Hartwich, T. S. and Rennpferdt, C. (Ed.): Produktentwicklung und Konstruktionstechnik, Forschungsergebnisse und -projekte der Jahre 2016 bis 2020, Springer Verlag, Berlin, pp. 207228. 10.1007/978-3-662-62393-0_9Google Scholar
Hanna, M., Schwede, L.-N., Schwenke, J., Laukotka, F and Krause, D. (2021), “Methodical modeling of product and process data of design methods using the example of modular lightweight design”, Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition / IMECE2021, Virtual, Online, November 1-5, 2021, The American Society of Mechanical Engineers, New York City.Google Scholar
Heyden, E., Hartwich, T. S., Schwenke, J. and Krause, D. (2019), “Transferability of Boundary Conditions and Validation of Lightweight Structures”, Proceedings of the 30th Symposium Design for X (DFX2019), Jesteburg, Germany, September 18-19, 2019, The Design Society, Glasgow, pp. 8596. 10.35199/dfx2019.8Google Scholar
Holt, J., Perry, S., Brownsword, M., Cancila, D., Hallerstede, S. and Hansen, F. O. (2012), “Model-based requirements engineering for system of systems”, 7th International Conference on System of Systems Engineering (SoSE), Genova, Italy, July 16-19, 2012, IEEE, Piscataway, pp. 561566. 10.1109/SYSoSE.2012.6384145CrossRefGoogle Scholar
Jagla, P., Jacobs, G., Siebrecht, J., Wischmann, S. and Sprehe, J. (2021), “Using SysML to Support Impact Analysis on Structural Dynamics Simulation Models”, Procedia CIRP, Vol. 100, pp. 9196. 10.1016/j.procir.2021.05.015.CrossRefGoogle Scholar
Krause, D., Beckmann, G., Eilmus, S., Gebhardt, N. and Rettberg, R. (2014), „Integrated Development of Modular Product Families - a Methods Toolkit”, In: Simpson, T., Jiao, J., Siddique, Z. and Hölttä-Otto, K. (Ed.): Advances in Product Family and Product Platform - Design Methods & Applications, Springer Science + Business Media, LLC., New York, pp. 245269.CrossRefGoogle Scholar
Krause, D., Schwenke, J., Gumpinger, T. and Plaumann, B. (2018), “Leichtbau”, In: Rieg, F. and Steinhilper, R. (Ed.), Handbuch Konstruktion, Carl Hanser Verlag, München, pp. 487507.Google Scholar
Russwurm, E., Faltus, F., Laukotka, F., Schwan, L., Brossog, M. et al. . (2021), “Methodik zur frühzeitigen Integration prozessspezifischer Einflussfaktoren aus der automatisierten Montage in die Auslegung funktionskritischer Komponenten”, Proceedings of the 32th Symposium Design for X (DFX2021), Tutzing, Germany, September 27-28, 2021, The Design Society, Glasgow. 10.35199/dfx2021.02Google Scholar
Schwan, L., Hüttich, P., Wegner, M. and Krause, D. (2021), “Procedure for the transferability of application-specific boundary conditions for the testing of components and products”, Proceedings of the 32th Symposium Design for X (DFX2021), Tutzing, Germany, September 27-28, 2021, The Design Society, Glasgow. 10.35199/dfx2021.04Google Scholar
Seiler, F. M., Hanna, M., Schwede, L.-N., Laukotka, F. and Krause, D. (2020), “MBSE zur Unterstützung der Produktentwicklung von modularen Produktarchitekturen”, In Krause, D., Hartwich, T. S. and Rennpferdt, C. (Ed.): Produktentwicklung und Konstruktionstechnik, Forschungsergebnisse und -projekte der Jahre 2016 bis 2020, Springer Verlag, Berlin, pp. 111134. 10.1007/978-3-662-62393-0_5CrossRefGoogle Scholar
Szarazi, J., Reichwein, A. and Bock, C. (2017), “Integrating Finite Element Analysis with Systems Engineering Models”, Proceedings of the NAFEMS World Congress, Stockholm, Sweden, June 11-14, 2017.Google Scholar
Weilkins, T. (2008), Systems Engineering with SysML/UML: Modeling, Analysis, Design, Morgan Kaufmann, Burlington. 10.1016/B978-0-12-374274-2.X0001-6Google Scholar
Werkle, H. (2021), Finite Elements in Structural Analysis, Springer, Berlin. 10.1007/978-3-030-49840-5_4Google Scholar