Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T20:44:35.806Z Has data issue: false hasContentIssue false

METHOD FOR UPGRADING A COMPONENT WITHIN REFURBISHMENT

Published online by Cambridge University Press:  27 July 2021

Nicola Viktoria Ganter*
Affiliation:
Leibniz University Hannover
Behrend Bode
Affiliation:
Leibniz University Hannover
Paul Christoph Gembarski
Affiliation:
Leibniz University Hannover
Roland Lachmayer
Affiliation:
Leibniz University Hannover
*
Ganter, Nicola Viktoria, Leibniz University Hannover, Institute of Product Development, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the arguments against an increased use of repair is that, due to the constantly growing progress, an often already outdated component would be restored. However, refurbishment also allows a component to be modified in order to upgrade it to the state of the art or to adapt it to changed requirements. Many existing approaches regarding Design for Upgradeability are based on a modular product architecture. In these approaches, however, only the upgradeability of a product is considered through the exchange of components. Nevertheless, the exchange and improvement of individual component regions within a refurbishment has already been successfully carried out using additive processes. In this paper, a general method is presented to support the reengineering process, which is necessary to refurbish and upgrade a damaged component. In order to identify which areas can be replaced in the closed system of a component, the systematics of the modular product architecture are used. This allows dependencies between functions and component regions to be identified. Thus, it possible to determine which functions can be integrated into the intended component.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Andersson, O., Graichen, A., Brodin, H. and Navrotsky, V. (2016), “Developing Additive Manufacturing Technology for Burner Repair”, in Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, June 13 – 17, 2016, Seoul, South Korea. https://doi.org/10.1115/gt2016-56594CrossRefGoogle Scholar
Baader, A., Montanus, S., Sfat, R. (2006) “After Sales Services — mit produktbegleitenden Dienstleistungen profitabel wachsen”, In: Barkawi, K., Baader, A., Montanus, S. (Eds.) Erfolgreich mit After Sales Services. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34548-5_1Google Scholar
Baldwin, C. Y. & Clark, K. B. (2000). “Design rules: The power of modularity” (Vol. 1). MIT press. https://doi.org/10.7551/mitpress/2366.001.0001CrossRefGoogle Scholar
Birger, E. M., Moskvitin, G.V., Polyakov, A.N. and Arkhipov, V.E. (2011), “Industrial laser cladding: current state and future”, in Welding International, Vol. 25, pp. 234243. https://doi.org/10.1080/09507116.2010.540880CrossRefGoogle Scholar
Brinker, J., Gembarski, P.C., Hagen, S. and Thomas, O. (2020), “Anwendungspotenziale von Additive Repair und Refurbishment für Service-orientierte Geschäftsmodelle”, in Lachmayer, R., Rettschlag, K., Kaierle, S. (Eds.) Konstruktion für die Additive Fertigung 2019, pp. 4354. https://doi.org/10.1007/978-3-662-61149-4_4CrossRefGoogle Scholar
Gembarski, P. C., Lachmayer, R. (2014), “Forward variance planning and modeling of multi-variant products”, Procedia CIRP, 21, 8186. https://doi.org/10.1016/j.procir.2014.03.161CrossRefGoogle Scholar
Göpfert, J. (2009). “Modulare Produktentwicklung-Zur gemeinsamen Gestaltung von Technik und Organisation; Theorie- Methodik- Praxis”, Zugl.: München, Univ., Diss., 1998, ID-Consult Wissen für die Praxis, 2. Aufl., Books on Demand, Norderstedt. https://doi.org/10.1007/978-3-663-08152-4_3Google Scholar
Jhavar, S., Paul, C.,P., Jain, N. K. (2013), “Causes of failure and repairing options for dies and molds: A review”, Engineering Failure Analysis, Vol.34, pp.519535. https://doi.org/10.1016/j.engfailanal.2013.09.006CrossRefGoogle Scholar
Khan, M.A., Wuest, T. (2018), “Towards a framework to design upgradable product service systems”, Procedia CIRP, Vol. 78, pp. 400405. https://doi.org/10.1016/j.procir.2018.08.326CrossRefGoogle Scholar
Krause, D., Gebhardt, N. (2018), “Methodische Entwicklung modularer Produktfamilien: hohe Produktvielfalt beherrschbar entwickeln”, Springer-Verlag. https://doi.org/10.1007/978-3-662-53040-5CrossRefGoogle Scholar
Pahl, G., Beitz, W., Schulz, H. J., Jarecki, U. (2013), “Pahl/Beitz Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung.“, Springer-Verlag. https://doi.org/10.1007/978-3-662-57303-7CrossRefGoogle Scholar
Pan, J., Nigro, R., Matsuo, E. (2005), “3-D modeling of heat transfer in diesel engine piston cooling galleries”, SAE transactions, 11741181. https://doi.org/10.4271/2005-01-1644Google Scholar
Ramani, K., Ramanujan, D., Bernstein, W. Z., Zhao, F., Sutherland, J., Handwerker, C., Choi, J., Kim, H., Thurston, D. (2010), “Integrated sustainable life cycle design: a review.“ Journal of Mechanical Design 132. 9. https://doi.org/10.1115/1.4002308CrossRefGoogle Scholar
Schreiber, D., Gembarski, P.C., Lachmayer, R. (2018), “Data Models for PSS Development and Configuration: Existing Approaches and Future Research”, In: Hankammer, S., Nielsen, K., Piller, F. Th., Schuh, G., Wang, N. (Eds.) Customization 4.0, Springer International Publishing, pp. 5574. https://doi.org/10.1007/978-3-319-77556-2_4Google Scholar
Sexton, L. (2003), “Laser cladding: repairing and manufacturing metal parts and tools”, in Proc. SPIE 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications. https://doi.org/10.1117/12.463704CrossRefGoogle Scholar
Ulrich, K. (1995). “The role of product architecture in the manufacturing firm”, Research policy, 24(3), 419440. https://doi.org/10.1016/0048-7333(94)00775-3Google Scholar
Xing, K., Belusko, M., Luong, L. and Abhary, K. (2007), “An evaluation model of product upgradeability for remanufacture”, The International Journal of Advanced Manufacturing Technology, Vol. 35 No. 1-2, pp. 114. https://doi.org/10.1007/s00170-006-0698-9CrossRefGoogle Scholar
Zghair, Y.A., Leuteritz, G. (2017), “Additive Repair von Multimaterialsystemen im Selektiven Laserstrahlschmelzen”. In: Lachmayer, R., Lippert, R. (Eds.) Additive Manufacturing Quantifiziert. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54113-5_13Google Scholar
Zghair, Y.A. (2019), “Additive Repair Design Process for Aluminium Components”, Dissertation, Institut für Produktentwicklung (IPeG), Leibniz Universität Hannover, Hannover, 2019.Google Scholar