Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:38:04.365Z Has data issue: false hasContentIssue false

Method for Function-Based Identification of Potential AM Components in Conventional Product Architectures

Published online by Cambridge University Press:  26 May 2022

V. R. Molina*
Affiliation:
Technische Universität Berlin, Germany
L. Reyes Rey
Affiliation:
Technische Universität Berlin, Germany
S. Werner
Affiliation:
Technische Universität Berlin, Germany
D. Göhlich
Affiliation:
Technische Universität Berlin, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The implementation of additive manufacturing enables the the re-thinking of a product towards function-oriented design. This study proposes a method, which uses a set of rules and indicators to implement functional integration, part consolidation, part separation and on-demand manufacturing onto a conventional prodcut architecture to restructure it into an AM-oriented product architecture. The feasibility of the method is demonstrated on an assembly from the field of high temperature applications.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Bracken, Jennifer; Pomorski, Thomas; Armstrong, Clinton; Prabhu, Rohan; Simpson, Timothy W.; Jablokow, Kathryn et al. . (2020): Design for metal powder bed fusion: The geometry for additive part selection (GAPS) worksheet. In: Additive Manufacturing 35. DOI: 10.1016/j.addma.2020.101163.Google Scholar
Diegel, Olaf; Nordin, Axel; Motte, Damien (2019): A Practical Guide to Design for Additive Manufacturing. Singapore: Springer Singapore.Google Scholar
Fontana, Filippo; Marinelli, Enrico; Meboldt, Mirko (2018): Selection of High-Variety Components for Selective Laser Sintering: An Industrial Case Study. In: Mirko Meboldt und Christoph Klahn (Hg.): Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. Cham: Springer International Publishing, S. 238251.Google Scholar
Frandsen, Casper Selmer; Nielsen, Martin Mathias; Chaudhuri, Atanu; Jayaram, Jayanth; Govindan, Kannan (2020): In search for classification and selection of spare parts suitable for additive manufacturing: a literature review. In: International Journal of Production Research 58 (4), S. 970996. DOI: 10.1080/00207543.2019.1605226.Google Scholar
Inkermann, David; Hanna, Michael; Richter, Timo; Wortmann, Nadine; Vietor, Thomas; Krause, Dieter (2019): Die Produktarchitektur als zentrales Konzept in der Produktentwicklung. In: DFX 2019: Proceedings of the 30th Symposium Design for X, 18-19 September 2019, Jesteburg, Germany. 30th Symposium Design for X, 18th-19th September 2019: The Design Society.Google Scholar
Kim, Samyeon; Moon, Seung Ki (2020): A Part Consolidation Design Method for Additive Manufacturing based on Product Disassembly Complexity. In: Applied Sciences 10 (3), S. 1100. DOI: 10.3390/app10031100.Google Scholar
Kim, Samyeon; Tang, Yunlong; Rosen, David W. (2019): Design for additive manufacturing: Simplification of product architecture by part consolidation for the lifecycle. Online verfügbar unter http://utw10945.utweb.utexas.edu/sites/default/files/2019/001%20Design%20for%20Additive%20Manufacturing%20Simplification.pdf, zuletzt geprüft am 10.04.2021.Google Scholar
Klahn, Christoph; Fontana, Filippo; Leutenecker-Twelsiek, Bastian; Meboldt, Mirko (2020): Mapping value clusters of additive manufacturing on design strategies to support part identification and selection. In: RPJ ahead-of-print (ahead-of-print), S. 100902. DOI: 10.1108/RPJ-10-2019-0272.Google Scholar
Klahn, Christoph; Leutenecker, Bastian; Meboldt, Mirko (2014): Design for Additive Manufacturing – Supporting the Substitution of Components in Series Products. In: Procedia CIRP 21, S. 138143. DOI: 10.1016/j.procir.2014.03.145.Google Scholar
Knofius, Nils; van der Heijden, Matthieu C.; Zijm, W.H.M. (2016): Selecting parts for additive manufacturing in service logistics. In: Journal of Manufacturing Technology Management 27 (7), S. 915931. DOI: 10.1108/JMTM-02-2016-0025.Google Scholar
Krause, Dieter; Vietor, Thomas; Inkermann, David; Hanna, Michael; Richter, Timo; Wortmann, Nadine (2021): Produktarchitektur. In: Beate Bender und Kilian Gericke (Hg.): Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwicklung. Berlin, Heidelberg: Springer Berlin Heidelberg, S. 335393.Google Scholar
Kruse, A.; Reiher, T., Koch, R. (2017): Integrating AM into existing companies - selection of existing parts for increase of acceptance.Google Scholar
Kumke, Martin (2018): Methodisches Konstruieren von additiv gefertigten Bauteilen. Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
Lachmayer, Roland; Lippert, René Bastian (2020): Entwicklungsmethodik für die Additive Fertigung. Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
Leutenecker-Twelsiek, Bastian (2019a): Additive Fertigung in der industriellen Serienproduktion: Bauteilidentifikation und Gestaltung. ETH Zurich.Google Scholar
Leutenecker-Twelsiek, Bastian (2019b): Additive Fertigung in der industriellen Serienproduktion: Bauteilidentifikation und Gestaltung. ETH Zurich.Google Scholar
Ley, M.; Buschhorn, N.; Stephan, N.; Teutsch, R.; Deschner, C.; Bleckmann, M. (2018): Hybrid-optimierte Fertigung von tragenden Bauteilen durch Kombination konventioneller und additiver Fertigungsverfahren.Google Scholar
Ley, M.; Hilbert, K.; Buschhorn, N.; Stephan, N. (2017a): Obsoleszenzmanagement unterstützt durch additive Fertigung. Von der Bauteilidentifikation bis zum fertigen Ersatzteil. In: Stuttgarter Symposium für Produktentwicklung.Google Scholar
Ley, M.; Hilbert, K.; Buschhorn, N.; Stephan, N. (2017b): Obsoleszenzmanagement unterstützt durch additive Fertigung. Von der Bauteilidentifikation bis zum fertigen Ersatzteil. In: Stuttgarter Symposium für Produktentwicklung 2017.Google Scholar
Lindemann, Christian; Reiher, Thomas; Jahnke, Ulrich; Koch, Rainer (2015): Towards a sustainable and economic selection of part candidates for additive manufacturing. In: Rapid Prototyping Journal 21 (2), S. 216227. DOI: 10.1108/RPJ-12-2014-0179.Google Scholar
Nie, Zhenguo; Jung, Sangjin; Kara, Levent Burak; Whitefoot, Kate S. (2020): Optimization of Part Consolidation for Minimum Production Costs and Time Using Additive Manufacturing. In: Journal of Mechanical Design 142 (7), S. 831. DOI: 10.1115/1.4045106.Google Scholar
Page, Thomas Daniel; Yang, Sheng; Zhao, Yaoyao Fiona (2019): Automated Candidate Detection for Additive Manufacturing: A Framework Proposal. In: Proc. Int. Conf. Eng. Des. 1 (1), S. 679688. DOI: 10.1017/dsi.2019.72.Google Scholar
Reichwein, Jannik; Rudolph, Kris; Geis, Johannes; Kirchner, Eckhard (2021): Adapting product architecture to additive manufacturing through consolidation and separation. In: Procedia CIRP 100, S. 7984. DOI: 10.1016/j.procir.2021.05.013.Google Scholar
Reiher, Thomas; Lindemann, Christian; Jahnke, Ulrich; Deppe, Gereon; Koch, Rainer (2017): Holistic approach for industrializing AM technology: from part selection to test and verification. In: Prog Addit Manuf 2 (1-2), S. 4355. DOI: 10.1007/s40964-017-0018-y.Google Scholar
Richter, Timo (2020): A methodical framework supporting product architecture design in conceptualization. Dr. Hut.Google Scholar
Richter, Timo; Watschke, Hagen; Inkermann, David; Vietor, Thomas (2016): Produktarchitekturgestaltung unter Berücksichtigung additiver Fertigungsverfahren. Dresden: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden; Technische Universität Dresden.Google Scholar
Schuh, Günther; Lenders, Michael; Nußbaum, Christopher; Rudolf, Stefan (2012): Produktarchitekturgestaltung. In: Günther Schuh (Hg.): Innovationsmanagement, Bd. 24. Berlin, Heidelberg: Springer Berlin Heidelberg, S. 115160.Google Scholar
Steffan, K.-E. W. H.; Fett, M.; Kirchner, E. (2020): EXTENDED APPROACH TO OPTIMIZE MODULAR PRODUCTS THROUGH THE POTENTIALS OF ADDITIVE MANUFACTURING. In: Proc. Des. Soc.: Des. Conf. 1, S. 11151124. DOI: 10.1017/dsd.2020.172.CrossRefGoogle Scholar
Ulrich, Karl (1995): The role of product architecture in the manufacturing firm. In: Research Policy 24 (3), S. 419440. DOI: 10.1016/0048-7333(94)00775-3.Google Scholar
Wagner, Christian (2018): Funktionsintegration im Rahmen einer fertigungsgetriebenen Produktentwicklung. Dissertation. Technische Universität Darmstadt, Darmstadt.Google Scholar
Yang, Sheng; Page, Thomas; Zhang, Ying; Zhao, Yaoyao Fiona (2020): Towards an automated decision support system for the identification of additive manufacturing part candidates. In: J Intell Manuf 31 (8), S. 19171933. DOI: 10.1007/s10845-020-01545-6.Google Scholar
Yang, Sheng; Santoro, Florian; Sulthan, Mohamed A.; Zhao, Yaoyao Fiona (2019): A numerical-based part consolidation candidate detection approach with modularization considerations. In: Res Eng Design 30 (1), S. 6383. DOI: 10.1007/s00163-018-0298-3.Google Scholar
Yang, Sheng; Santoro, Florian; Zhao, Yaoyao Fiona (2018): Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation. In: Journal of Mechanical Design 140 (4), S. 327. DOI: 10.1115/1.4038923.Google Scholar
Ziebart, Jan Robert (2012): Ein konstruktionsmethodischer Ansatz zur Funktionsintegration. Zugl.: Braunschweig, Techn. Univ., Diss., 2012. 1. Aufl. München: Dr. Hut (Bericht / Institut für Konstruktionstechnik, Technische Universität Braunschweig, 83).Google Scholar