Article contents
Machine Learning Based Simulation for Design Space Exploration
Published online by Cambridge University Press: 26 May 2022
Abstract
Design of software in the automotive domain often involves simulation to allow early software parametrization. Modeling complex systems or components impacted by the software in an analytical way can be time-consuming, require domain knowledge and executing the analytical models can result in high computational effort. In specific applications, these challenges can be overcome by applying machine learning based simulation. This contribution presents results of a case study in which powertrain components are modeled data-driven with artificial neural networks to support design space exploration
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2022.
References
- 1
- Cited by