Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T08:13:25.024Z Has data issue: false hasContentIssue false

Interdisciplinary Transition Innovation, Management, and Engineering (InTIME) Design: an intersection analysis of design approaches for whole-system sustainability

Published online by Cambridge University Press:  16 May 2024

Florian Ahrens*
Affiliation:
Heriot-Watt University, United Kingdom
Susan Krumdieck
Affiliation:
Heriot-Watt University, United Kingdom
Daniel Kenning
Affiliation:
Splendid Engineering, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interdisciplinary transition innovation, management, and engineering (InTIME) Design has been developed to overcome sustainability transition challenges in complex systems. The intersections of InTIME Design with a range of reported design for sustainability (DfS) approaches were analysed. Results demonstrate similar core principles across DfS approaches. InTIME Design accomplishes convergence of the studied approaches, and organises the DfS approaches into workflow phases, adds a complimentary wicked problem definition, and deploys systems engineering problem solving.

Type
Design for Sustainability
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Ahrens, F., Land, J., Krumdieck, S., 2022. Decarbonization of Nitrogen Fertilizer: A Transition Engineering Desk Study for Agriculture in Germany. Sustainability 14, 8564. https://doi.org/10.3390/su14148564CrossRefGoogle Scholar
Allenby, B., 2000. Earth systems engineering and management. IEEE Technol. Soc. Mag. 19, 1024. https://doi.org/10.1109/44.890078CrossRefGoogle Scholar
Andrade, I., Land, J., Gallardo, P., Krumdieck, S., 2022. Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study. Sustainability 14, 12053. https://doi.org/10.3390/su141912053CrossRefGoogle Scholar
Bai, M., Krumdieck, S., 2020. Transition engineering of transport in megacities with case study on commuting in Beijing. Cities 96, 102452. https://doi.org/10.1016/j.cities.2019.102452CrossRefGoogle Scholar
Blair, N., Pons, D., Krumdieck, S., 2019. Electrification in Remote Communities: Assessing the Value of Electricity Using a Community Action Research Approach in Kabakaburi, Guyana. Sustainability 11, 2566. https://doi.org/10.3390/su11092566CrossRefGoogle Scholar
Broman, G.I., Robèrt, K.-H., 2017. A framework for strategic sustainable development. J. Clean. Prod. 140, 1731. https://doi.org/10.1016/j.jclepro.2015.10.121CrossRefGoogle Scholar
Ceschin, F., Gaziulusoy, I., 2016. Evolution of design for sustainability: From product design to design for system innovations and transitions. Des. Stud. 47, 118163. https://doi.org/10.1016/j.destud.2016.09.002CrossRefGoogle Scholar
Creutzig, F., Fernandez, B., Haberl, H., Khosla, R., Mulugetta, Y., Seto, K.C., 2016. Beyond Technology: Demand-Side Solutions for Climate Change Mitigation. Annu. Rev. Environ. Resour. 41, 173198. https://doi.org/10.1146/annurev-environ-110615-085428CrossRefGoogle Scholar
Drew, C., Johnson, J., Chadha, S., Carlisle, C., Burnett, A., 2021. Beyond Net Zero A Systemic Design Approach. Design Council.Google Scholar
Eckert, C., Clarkson, J., 2021. The Evolution of Complex Engineering Systems, in: Maier, A., Oehmen, J., Vermaas, P.E. (Eds.), Handbook of Engineering Systems Design. Springer International Publishing, Cham, pp. 139. https://doi.org/10.1007/978-3-030-46054-9_6-1Google Scholar
Fulhu, M., Mohamed, M., Krumdieck, S., 2019. Voluntary demand participation (VDP) for security of essential energy activities in remote communities with case study in Maldives. Energy Sustain. Dev. 49, 2738. https://doi.org/10.1016/j.esd.2019.01.002CrossRefGoogle Scholar
Gagnon, B., Leduc, R., Savard, L., 2012. From a conventional to a sustainable engineering design process: different shades of sustainability. J. Eng. Des. 23, 4974. https://doi.org/10.1080/09544828.2010.516246CrossRefGoogle Scholar
Gallardo, P., Murray, R., Krumdieck, S., 2021. A Sequential Optimization-Simulation Approach for Planning the Transition to the Low Carbon Freight System with Case Study in the North Island of New Zealand. Energies 14, 3339. https://doi.org/10.3390/en14113339CrossRefGoogle Scholar
GATE, 2023. Global Assosiation for Transition Engineering Mission [WWW Document]. URL https://www.transitionengineering.org/about_us (accessed 11.13.23).Google Scholar
Gaziulusoy, A.İ., Boyle, C., McDowall, R., 2013. System innovation for sustainability: a systemic double-flow scenario method for companies. J. Clean. Prod. 45, 104116. https://doi.org/10.1016/j.jclepro.2012.05.013CrossRefGoogle Scholar
Geels, F.W., Sovacool, B.K., Schwanen, T., Sorrell, S., 2017. The Socio-Technical Dynamics of Low-Carbon Transitions. Joule 1, 463479. https://doi.org/10.1016/j.joule.2017.09.018CrossRefGoogle Scholar
Gyamfi, S., Krumdieck, S., 2011. Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response. Energy Policy 39, 29933004. https://doi.org/10.1016/j.enpol.2011.03.012CrossRefGoogle Scholar
Irwin, T., 2018. The Emerging Transition Design Approach. Presented at the Design Research Society Conference 2018. https://doi.org/10.21606/drs.2018.210Google Scholar
Kim, J., Oki, T., 2011. Visioneering: an essential framework in sustainability science. Sustain. Sci. 6, 247251. https://doi.org/10.1007/s11625-011-0130-8CrossRefGoogle Scholar
King, L.C., van den Bergh, J.C.J.M., 2018. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 3, 334340. https://doi.org/10.1038/s41560-018-0116-1Google Scholar
Kroes, P., Franssen, M., Poel, I.V.D., Ottens, M., 2006. Treating socio-technical systems as engineering systems: some conceptual problems. Syst. Res. Behav. Sci. 23, 803814. https://doi.org/10.1002/sres.703CrossRefGoogle Scholar
Krumdieck, S., 2022. Survival is the driver for adaptation: safety engineering changed the future, security engineering prevented disasters and transition engineering navigates the pathway to the climate-safe future. Phys. Sci. Rev. 0. https://doi.org/10.1515/psr-2021-0067CrossRefGoogle Scholar
Krumdieck, S., 2019. Transition engineering: building a sustainable future, 1st ed. CRC Press, Boca Raton.CrossRefGoogle Scholar
Krumdieck, S., 2015. Peak Oil Vulnerability Assessment for Dunedin. https://doi.org/10.13140/RG.2.1.4904.2080CrossRefGoogle Scholar
Krumdieck, S., Hamm, A., 2009. Strategic analysis methodology for energy systems with remote island case study. Energy Policy 37, 33013313. https://doi.org/10.1016/j.enpol.2009.02.005CrossRefGoogle Scholar
Lang, D.J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M., Thomas, C.J., 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain. Sci. 7, 2543. https://doi.org/10.1007/s11625-011-0149-xCrossRefGoogle Scholar
Lawrence, M.G., Williams, S., Nanz, P., Renn, O., 2022. Characteristics, potentials, and challenges of transdisciplinary research. One Earth 5, 4461. https://doi.org/10.1016/j.oneear.2021.12.010CrossRefGoogle Scholar
Max-Neef, M., 1992. Development and Human Needs, in: Development Ethics. Routledge. https://doi.org/10.4324/9781315258003CrossRefGoogle Scholar
McMahon, C., Krumdieck, S., 2022. Transitioning to Sustainable Engineering Systems, in: Maier, A., Oehmen, J., Vermaas, P.E. (Eds.), Handbook of Engineering Systems Design. Springer International Publishing, Cham, pp. 123. https://doi.org/10.1007/978-3-030-46054-9_37-1Google Scholar
Meadows, D.H., Wright, D., 2008. Thinking in systems: a primer. Chelsea Green Pub, White River Junction, Vt.Google Scholar
Mistry, J., Berardi, A., 2016. Bridging indigenous and scientific knowledge. Science 352, 12741275. https://doi.org/10.1126/science.aaf1160CrossRefGoogle ScholarPubMed
Nevens, F., Frantzeskaki, N., Gorissen, L., Loorbach, D., 2013. Urban Transition Labs: co-creating transformative action for sustainable cities. J. Clean. Prod. 50, 111122. https://doi.org/10.1016/j.jclepro.2012.12.001CrossRefGoogle Scholar
Nikolaou, I.E., Tsalis, T.A., Evangelinos, K.I., 2019. A framework to measure corporate sustainability performance: A strong sustainability-based view of firm. Sustain. Prod. Consum. 18, 118. https://doi.org/10.1016/j.spc.2018.10.004CrossRefGoogle Scholar
Robinson, J.B., 1990. Futures under glass. Futures 22, 820842. https://doi.org/10.1016/0016-3287(90)90018-DCrossRefGoogle Scholar
Rotmans, J., Kemp, R., van Asselt, M., 2001. More evolution than revolution: transition management in public policy. Foresight 3, 1531. https://doi.org/10.1108/14636680110803003CrossRefGoogle Scholar
Seager, T., Selinger, E., Wiek, A., 2012. Sustainable Engineering Science for Resolving Wicked Problems. J. Agric. Environ. Ethics 25, 467484. https://doi.org/10.1007/s10806-011-9342-2CrossRefGoogle Scholar
Silva, F., Coward, F., Davies, K., Elliott, S., Jenkins, E., Newton, A.C., Riris, P., Vander Linden, M., Bates, J., Cantarello, E., Contreras, D.A., Crabtree, S.A., Crema, E.R., Edwards, M., Filatova, T., Fitzhugh, B., Fluck, H., Freeman, J., Klein Goldewijk, K., Krzyzanska, M., Lawrence, D., Mackay, H., Madella, M., Maezumi, S.Y., Marchant, R., Monsarrat, S., Morrison, K.D., Rabett, R., Roberts, P., Saqalli, M., Stafford, R., Svenning, J.-C., Whithouse, N.J., Williams, A., 2022. Developing Transdisciplinary Approaches to Sustainability Challenges: The Need to Model Socio-Environmental Systems in the Longue Durée. Sustainability 14, 10234. https://doi.org/10.3390/su141610234CrossRefGoogle Scholar
Simon, H.A., 1996. The sciences of the artificial, 3rd ed. ed. MIT Press, Cambridge, Mass.Google Scholar
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., Ludwig, C., 2015. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 8198. https://doi.org/10.1177/2053019614564785Google Scholar
Steffen, W., Richardson, K., Rockström, J., Schellnhuber, H.J., Dube, O.P., Dutreuil, S., Lenton, T.M., Lubchenco, J., 2020. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 1, 5463. https://doi.org/10.1038/s43017-019-0005-6CrossRefGoogle Scholar
The Shift Project, 2023. The Shift Project Ambition [WWW Document]. URL https://theshiftproject.org/ambition/ (accessed 11.13.23).Google Scholar
Watari, T., Cao, Z., Hata, S., Nansai, K., 2022. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 13, 4158. https://doi.org/10.1038/s41467-022-31806-2CrossRefGoogle ScholarPubMed
Weaver, P., Jansen, L., Van Grootveld, G., Van Spiegel, E., Vergragt, P., 2017. Sustainable Technology Development, 1st ed. Routledge. https://doi.org/10.4324/9781351283243CrossRefGoogle Scholar