Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T18:43:13.220Z Has data issue: false hasContentIssue false

Function Integration through Design for Hybrid Integrating Additive Manufacturing Technologies

Published online by Cambridge University Press:  26 May 2022

K.-E. W. H. Steffan*
Affiliation:
Technical University of Darmstadt, Germany
M. Fett
Affiliation:
Technical University of Darmstadt, Germany
E. Kirchner
Affiliation:
Technical University of Darmstadt, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Additive manufacturing (AM) technologies enable the design of new products due to their potentials. The potential of function integration can be extended through a combination of AM with a component integrating technology forming a hybrid integrating additive manufacturing technology (hiAM). With a created development method optimization areas within a product are identified on a functional level using characteristics, structural configurations and integrated functional areas. These are derived analysing examples in literature. The method is applied to a mechanical arm and hand prosthesis.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Achillas, C., Aidonis, D., Iakovou, E., Thymianidis, M. and Tzetzis, D. (2015) “A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory”, Journal of Manufacturing Systems, Vol. 37, pp. 328339. 10.1016/j.jmsy.2014.07.014CrossRefGoogle Scholar
Braza, D.W. and Martin, J.N.Y. (2020), Upper Limb Amputations, in Essentials of Physical Medicine and Rehabilitation, Elsevier, pp. 651657. 10.1016/B978-0-323-54947-9.00119-XCrossRefGoogle Scholar
DIN Deutsches Institut für Normung e.V. (2003), DIN 8580:2003: Fertigungsverfahren: Begriffe, Einteilung, Beuth VerlagGoogle Scholar
Espalin, D., Muse, D.W., MacDonald, E. and Wicker, R.B. (2014)“3D Printing multifunctionality: structures with electronics”, The International Journal of Advanced Manufacturing Technology, Vol. 72 No. 5-8, pp. 963978. 10.1007/s00170-014-5717-7CrossRefGoogle Scholar
Gao, W., Zhang, Y., Ramanujan, D., Ramani, K. and Chen, Y., et al. . (2015) “The status, challenges, and future of additive manufacturing in engineering”, Computer-Aided Design, Vol. 69, pp. 6589. 10.1016/j.cad.2015.04.001CrossRefGoogle Scholar
Gibson, I., Rosen, D., Stucker, B. and Khorasani, M. (2021), Additive Manufacturing Technologies, Springer International Publishing, Cham. 10.1007/978-3-030-56127-7Google Scholar
Glasschroeder, J., Prager, E. and Zaeh, M.F. (2015) “Powder-bed-based 3D-printing of function integrated parts”, Rapid Prototyping Journal, Vol. 21 No. 2, pp. 207215. 10.1108/RPJ-12-2014-0172CrossRefGoogle Scholar
Joshi, P.C., Dehoff, R.R., Duty, C.E., Peter, W.H. and Ott, R.D., et al. (2012) “Direct digital additive manufacturing technologies: Path towards hybrid integration”, 2012 Future of Instrumentation International Workshop (FIIW) Proceedings, Gatlinburg, TN, USA, October 08-09, 2012, pp. 14. 10.1109/FIIW.2012.6378353Google Scholar
Kate, J. ten, Smit, G. and Breedveld, P. (2017) “3D-printed upper limb prostheses: a review”, Disability and rehabilitation. Assistive technology, Vol. 12 No. 3, pp. 300314. 10.1080/17483107.2016.1253117Google ScholarPubMed
Kumke, M. (2018), Methodisches Konstruieren von additiv gefertigten Bauteilen, Springer Fachmedien Wiesbaden, Wiesbaden. 10.1007/978-3-658-22209-3CrossRefGoogle Scholar
Lauwers, B., Klocke, F., Klink, A., Tekkaya, A.E., Neugebauer, R. and Mcintosh, D. (2014) “Hybrid processes in manufacturing”, CIRP Annals, Vol. 63 No. 2, pp. 561583. 10.1016/j.cirp.2014.05.003CrossRefGoogle Scholar
Laverne, F., Segonds, F., D'Antonio, G. and Le Coq, M.C. (2017) “Enriching design with X through tailored additive manufacturing knowledge: a methodological proposal”, International Journal on Interactive Design and Manufacturing, Vol. 11 No. 2, pp. 279288. 10.1007/s12008-016-0314-7Google Scholar
Lopes, A.J., MacDonald, E. and Wicker, R.B. (2012) “Integrating stereolithography and direct print technologies for 3D structural electronics fabrication”, Rapid Prototyping Journal, Vol. 18 No. 2, pp. 129143. 10.1108/13552541211212113CrossRefGoogle Scholar
Lopes, A.J., Navarrete, M., Medina, F., Palmer, J., MacDonald, E. and Wicker, R.B. (2006) “Expanding rapid prototyping for electronic systems integration of arbitrary form”, 17th annual solid freeform fabrication symposium, Austin, Texas, August, 2006, pp. 644655.Google Scholar
MacDonald, E., Salas, R., Espalin, D., Perez, M. and Aguilera, E., et al. . (2014) “3D Printing for the Rapid Prototyping of Structural Electronics”, IEEE Access, Vol. 2, pp. 234242. 10.1109/ACCESS.2014.2311810CrossRefGoogle Scholar
Navarrete, M., Lopes, A., Acuna, J., Estrada, R. and MacDonald, E., et al. . (2007) “Integrated Layered Manufacturing of a Novel Wireless Motion Sensor System With GPSGoogle Scholar
Ottobock (2021), Homepage - Mechanische Prothesenpassteile - Body-Powered. [online] Ottobock, Available at: https://www.ottobock.de/prothesen/armprothesen/body-powered/ (accessed 07.11.21)Google Scholar
Pahl, G., Beitz, W., Fehldhusen, J. and Grote, K.H. (2007), Engineering design, Springer, London.Google Scholar
Pereira, J.C., Moreno, R., Tenbrock, C., Herget, A., Wittich, T. and Hamilton, K. (2021) “Advances in Multi-Process Hybrid Production Cells for Rapid Individualised Laser-Based Production”, Applied Sciences, Vol. 11 No. 4, p. 1812. 10.3390/app11041812CrossRefGoogle Scholar
Periard, D., Malone, E. and Lipson, H. (2007) “Printing Embedded Circuits”, 18th Solid Freeform Fabrication Symposium, Austin, Texas, August 06-08, 2007, pp. 503512.Google Scholar
Pradel, P., Zhu, Z., Bibb, R. and Moultrie, J. (2018)“A framework for mapping design for additive manufacturing knowledge for industrial and product design”, Journal of Engineering Design, Vol. 29 No. 6, pp. 291326. 10.1080/09544828.2018.1483011Google Scholar
Sealy, M.P., Madireddy, G., Williams, R.E., Rao, P. and Toursangsaraki, M. (2018) “Hybrid Processes in Additive Manufacturing”, Journal of Manufacturing Science and Engineering, Vol. 140 No. 6, pp. 113. 10.1115/1.4038644CrossRefGoogle Scholar
Silva, M., Felismina, R., Mateus, A., Parreira, P. and Malça, C. (2017a) “Application of a Hybrid Additive Manufacturing Methodology to Produce a Metal/Polymer Customized Dental Implant”, Procedia Manufacturing, Vol. 12, pp. 150155. 10.1016/j.promfg.2017.08.019CrossRefGoogle Scholar
Silva, M., Mateus, A., Oliveira, D. and Malça, C. (2017b) “An alternative method to produce metal/plastic hybrid components for orthopedics applications”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 231 No. 1-2, pp. 179186. 10.1177/1464420716664545Google Scholar
Steffan, K.-E., Fett, M., Kurth, D. and Kirchner, E. (2021) “Identification Of Optimization Areas of A Transtibial Prosthesis Through The Potentials Of Additive Manufacturing Processes”, Proceedings of the ICED 2021 /23rd International Conference on Engineering Design, Gothenburg, Sweden, August 26-20, 2021. The Design Societey, Glasgow, pp. 18071816. 10.1017/pds.2021.442Google Scholar
Steffan, K.-E.W.H., Fett, M. and Kirchner, E. (2020)“Extended Approach To Optimize Modular Products Through The Potentials Of Additive Manufacturing”, Proceedings of the DESIGN 2020 / 16th International Design Conference, Dubrovnik, Croatia, October 26-29, 2020. The Design Societey, Glasgow, pp. 11151124. 10.1017/dsd.2020.172Google Scholar
Verein deutscher Ingenieure (2019), VDI 2221:2019: Design of technical products and systems: Model of product design, Beuth Verlag GmbH.Google Scholar
World Health Organization (2011), World Report on Disability. [online] World Health Organization, Available at: https://apps.who.int/iris/bitstream/handle/10665/70670/WHO_NMH_VIP_11.01_eng.pdf;jsessionid=D5A8F43168DF7612DA8D193DB1F38524?sequence=1 (accessed 06.11.21)Google Scholar
Xie, Z., Gao, M., Lobo, A.O. and Webster, T.J. (2020), “3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid”, Polymers, Vol. 12 No. 8, pp. 127. 10.3390/polym12081717CrossRefGoogle ScholarPubMed
Ziervogel, F., Boxberger, L., Bucht, A. and Drossel, W.-G. (2021), “Expansion of the Fused Filament Fabrication (FFF) Process Through Wire Embedding, Automated Cutting, and Electrical Contacting”, IEEE Access, Vol. 9, pp. 4303643049. 10.1109/ACCESS.2021.3065873Google Scholar