Article contents
Density-Based Topology Optimization for a Defined External State of Stress in Individualized Endoprosthesis
Published online by Cambridge University Press: 26 May 2022
Abstract
Endoprosthesis are exposed to the risk of aseptic loosening. The design of the prosthesis shaft to achieve physiological force application is therefore of great importance. Additive manufacturing offers the potential to fabricate highly variable topologies, but challenges the designer with a large number of design variables. In this work, a method is developed to determine an optimized density topology that approximates a given mechanical stress state in the bone after implantation. For this purpose, a topology optimization of the density distribution of the implant is performed.
Keywords
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2022.
References
- 4
- Cited by