Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T15:33:15.188Z Has data issue: false hasContentIssue false

Collaborative Modeling of Use Case & Damage Scenarios in Online Workshops Using a 3D Environment

Published online by Cambridge University Press:  26 May 2022

S. Japs*
Affiliation:
Fraunhofer IEM, Germany
S. Schmidt
Affiliation:
Fraunhofer IEM, Germany
F. Kargl
Affiliation:
Ulm University, Germany
L. Kaiser
Affiliation:
Technische Universität Berlin, Germany
A. Kharatyan
Affiliation:
Fraunhofer IEM, Germany
R. Dumitrescu
Affiliation:
Paderborn University, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The development of technical systems requires close cooperation of stakeholders from different disciplines. This collaboration takes place in workshops. Driven by digitalization and by the current pandemic such workshops take place primarily online. Suitable collaboration tools and methods are crucial to success. At the beginning of such workshops, use and damage scenarios are identified. In this paper, we presented a method and tool for identifying and modeling use and damage scenarios, which we evaluated in 14 online workshops with a total of 118 participants over a period of almost 3 years.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Anacker, H., Dumitrescu, R., Japs, S., (2021a), “SAVE: Security & safety by model-based systems engineering on the example of automotive industry”, Procedia CIRP, Volume 100, 2021, Pages 187192, doi: 10.1016/j.procir.2021.05.053.CrossRefGoogle Scholar
Anacker, H., Japs, S. (2021), “Resolution of safety relevant security threats in the system architecture design phase on the example of automotive industry”, Proceedings of the Design Society, 1, 25612570. doi:10.1017/pds.2021.517Google Scholar
Anacker, H., Dumitrescu, R., Kargl, F., Holtmann, J., Japs, S., Kaiser, L. (2021b), “D-REQs: Determination of security & safety requirements in workshops based on the use of model-based systems engineering,” 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), 2021, pp. 412–414, doi: 10.1109/REW53955.2021.00073.CrossRefGoogle Scholar
Autodesk (2021), Fusion 360 [online]. Available at: https://www.autodesk.de/products/fusion-360/overview (accessed 15.11.2021).Google Scholar
Autodesk_2 (2021), Thinkercad [online]. Available at: https://www.tinkercad.com/ (accessed 15.11.2021).Google Scholar
Brown, R., Harman, J., Johnson, D. (2017), “Improved Memory Elicitation in Virtual Reality: New Experimental Results and Insights”, 16th IFIP TC 13 International Conference, Mumbai, India, September 25–29, 2017, Springer International Publishing, 128146, doi: 10.1007/978-3-319-67684-5_9Google Scholar
Conceptboard (2021), Conceptboard [online]. Available at: https://conceptboard.com/ (accessed 15.11.2021).Google Scholar
Collaboard (2021), Collaboard [online]. Available at: https://www.collaboard.app/ (accessed 15.11.2021).Google Scholar
Chandrasegaran, S, Elmqvist, N., Ramani, K., Vinayak, C.P. (2016), Co-3Deator: A Team-First Collaborative 3D Design Ideation Tool, In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 2017: 6581–6592), Denver, CO, May 6–11, 2017, doi: 10.1145/3025453.3025825.CrossRefGoogle Scholar
Dori, D. (2016), “Model-Based Systems Engineering with OPM and SysML”, Springer, New York. doi: 10.1007/978-1-4939-3295-5.Google Scholar
draw.io (2021), draw.io [online]. Available at: https://app.diagrams.net/ (accessed 15.11.2021).Google Scholar
dSPACE (2021), SIMPHERA [online]. Available at: https://www.dspace.com/de/gmb/home/news/simphera.cfm (accessed 15.11.2021).Google Scholar
Figma (2021), Figma [online]. Available at: https://www.figma.com/ (accessed 15.11.2021).Google Scholar
Florides, C., Gregoriades, A., Hadjicosti, J., Michail, H, Pampaka, M. A. (2015), “Driving simulator for discovering requirements in complex systems”, SummerSim '15 Proceedings of the Conference on Summer Computer Simulation, Illinois, Chicago, July 26–29, 2015, pp 110. doi: 10.5555/2874916.2874919.CrossRefGoogle Scholar
Federal Government Germany (2021), ”Corona-Arbeitsschutzverordnung”, Available at: https://www.bundesregierung.de/bregde/themen/coronavirus/verordnung-zu-homeoffice-1841120, (accessed 15.11.2021)Google Scholar
Gausemeier, J., Ramming, F.J., Schäfer, W. (2014), Design Methodology for Intelligent Technical Systems: Develop Intelligent Technical Systems of the Future, Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-45435-6.Google Scholar
Google (2021), Docs [online]. Available at: https://www.google.de/intl/de/docs/about/ (accessed 15.11.2021).Google Scholar
Gumienny, R., Jobst, B., Lindber, T., Meinel, C. (2010), “Is There a Need for a Design Thinking Process?”, In Proceedings of Design Thinking Research Symposium 8 (Design 2010), Sydney, AustraliaGoogle Scholar
ISO (2021), ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering, ICS43.040.15 [online], Available at: https://www.iso.org/standard/70918.html (accessed 15.11.2021)Google Scholar
Japs, S. (2020), “Security & Safety by Model-based Requirements Engineering,” 2020 IEEE 28th International Requirements Engineering Conference (RE), 2020, pp. 422–427, doi: 10.1109/RE48521.2020.00062.Google Scholar
Japs, S. (2021), “Towards the development of the cybersecurity concept according to ISO/SAE 21434 using model-based systems engineering”, 2021 IEEE 29th International Requirements Engineering Conference (RE), 2021, pp. 486–491, doi: 10.1109/RE51729.2021.00073.Google Scholar
Khronos (2021), WebGL [online]. Available at: https://www.khronos.org/webgl/ (accessed 15.11.2021).Google Scholar
Kaiser, L., Kharatyan, A., Japs, S. (2020), “Method for 3D-environment driven domain knowledge elicitation and system model generation”, Proceedings of the Design Society: DESIGN Conference, 1, 197206. doi: 10.1017/dsd.2020.41.Google Scholar
Luzid (2021), Luzid-Chart [online]. Available at: https://www.lucidchart.com/pages/ (accessed 15.11.2021).Google Scholar
LG (2021), SVL Simulator [online]. Available at: https://www.svlsimulator.com/ (accessed 15.11.2021).Google Scholar
Meta (2021), Occulus Quest [online]. Available at: https://www.oculus.com/ (accessed 15.11.2021).Google Scholar
Microsoft (2021), Office 365 [online]. Available at: https://www.office.com/ (accessed 15.11.2021).Google Scholar
Miro (2021), miro [online]. Available at: https://miro.com/ (accessed 15.11.2021).Google Scholar
modelo (2021), modelo [online]. Available at: https://modelo.io/ (accessed 15.11.2021).Google Scholar
OMG (2015), System Modeling Language V.1.4, OMG, Object Management Group, Needham, Massachusetts, USA.Google Scholar
Onshape (2021), Onshape [online]. Available at: https://www.onshape.com/en/ (accessed 15.11.2021).Google Scholar
Sketchfab (2021), Sketchfab [online]. Available at: https://sketchfab.com/ (accessed 15.11.2021).Google Scholar
Trimble (2021), SketchUp [online]. Available at: https://www.sketchup.com/ (accessed 15.11.2021).Google Scholar
Unity Technologies (2021), Photon unity networking [online]. Available at: https://www.photonengine.com/pun (accessed 15.11.2021).Google Scholar
Vectary (2021), Vectary [online]. Available at: https://www.vectary.com/ (accessed 15.11.2021).Google Scholar