Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:49:16.041Z Has data issue: false hasContentIssue false

Approach of a virtual reality didactic toolkit – implementation and reflection

Published online by Cambridge University Press:  16 May 2024

Hans-Patrick Balzerkiewitz*
Affiliation:
Ostfalia Hochschule für angewandte Wissenschaften, Germany
Carsten Stechert
Affiliation:
Ostfalia Hochschule für angewandte Wissenschaften, Germany
David Inkermann
Affiliation:
Technische Universität Clausthal, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Virtual reality plays an increasingly important role in design education. However, a holistic view, starting with the didactic concept, the selection of a VR tool suitable for the learning task and a final reflective evaluation of the learning experience, rarely takes place. In this paper, the authors present an approach for a VR didactics toolkit that covers and takes into account all three points as a whole. The application and research environment here was the bachelor's degree module Ergonomics and Industrial Design at the Ostfalia University of Applied Sciences.

Type
Design Education
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Abdelhameed, W.A. (2013), “Virtual Reality Use in Architectural Design Studios: A Case of Studying Structure and Construction”, Procedia Computer Science, Vol. 25, pp. 220230. https://dx.doi.org/10.1016/j.procs.2013.11.027.CrossRefGoogle Scholar
Balzerkiewitz, H.P., Schade, N. and Stechert, C. (2022), “Evaluation of the Learning Effect of VR on Engineering Education – Case Study in Machine Elements”, in 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 07.12.2022 - 10.12.2022, IEEE, pp. 12521256.CrossRefGoogle Scholar
Bender, B. and Gericke, K. (2016), “Entwicklungsprozesse”, in Lindemann, U. (Ed.), Handbuch Produktentwicklung, Carl Hanser Verlag GmbH & Co. KG, München, pp. 399424.CrossRefGoogle Scholar
Bloom, B.S. (1972), Taxonomie von Lernzielen im kognitiven Bereich, Beltz, Weinheim.Google Scholar
Conforto, E.C., Amaral, D.C., Da Silva, S.L., Di Felippo, A. and Kamikawachi, D.S.L. (2016), “The agility construct on project management theory”, International Journal of Project Management, Vol. 34 No. 4, pp. 660674. https://dx.doi.org/10.1016/j.ijproman.2016.01.007.CrossRefGoogle Scholar
Dionisio, J.D.N. III, W.G.B. and Gilbert, R. (2013), “3D Virtual worlds and the metaverse”, ACM Computing Surveys, Vol. 45 No. 3, pp. 138. https://dx.doi.org/10.1145/2480741.2480751.CrossRefGoogle Scholar
Fauser, T. (2016), Virtual Reality-Lehre: Harvard startet öffentliche 3D-Vorlesung. available at: https://www.edukatico.org/de/news/virtual-reality-lehre-harvard-startet-oeffentliche-3d-vorlesung.Google Scholar
Gagne, R.M., Wager, W.W., Golas, K.C., Keller, J.M. and Russell, J.D. (2005), “Principles of instructional design, 5th edition”, Performance Improvement, Vol. 44 No. 2, pp. 4446. https://dx.doi.org/10.1002/pfi.4140440211CrossRefGoogle Scholar
Groß, M., Müller-Wiegand, M. and Pinnow, D.F. 2019, Zukunftsfähige Unternehmensführung, Springer Berlin Heidelberg, Berlin, Heidelberg. https://dx.doi.org/10.1007/978-3-662-59527-5.CrossRefGoogle Scholar
Hyojung, J., Younglong, K., Hyejeong, L. and Yoonhee, S., “Advanced Instructional Design for Successive E-Learning: Based on the Successive Approximation Model (SAM)”, International Jl. on E-Learning, Vol 18 No. 2, pp. 191204Google Scholar
Inkermann, D. (2021), “SHAPING METHOD ECOSYSTEMS - STRUCTURED IMPLEMENTATION OF SYSTEMS ENGINEERING IN INDUSTRIAL PRACTICE”, Proceedings of the Design Society, Vol. 1, pp. 26412650. https://dx.doi.org/10.1017/pds.2021.525.CrossRefGoogle Scholar
Inkermann, D., Gürtler, M. and Seegrün, A. (2020), “RECAP – A FRAMEWORK TO SUPPORT STRUCTURED REFLECTION IN ENGINEERING PROJECTS”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 597606. https://dx.doi.org/10.1017/dsd.2020.99.Google Scholar
Inkermann, D., Stechert, C., Ammersdörfer, T. and Balzerkiewitz, H.P. (2022), “Supporting Implementation of Virtual Reality in Engineering Design by Structured Reflection”, in 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 07.12.2022 - 10.12.2022, IEEE, pp. 15.Google Scholar
ISO (2022), ISO 9241: Ergonomie der Mensch-System-Interaktion, International Organization for StandardizationGoogle Scholar
Kamp, A. (2016), Engineering Education in the Rapidly Changing World. available at: http://resolver.tudelft.nl/uuid:ae3b30e3-5380-4a07-afb5-dafd30b7b433.Google Scholar
Locketz, G.D., Lui, J.T., Chan, S., Salisbury, K., Dort, J.C., Youngblood, P. and Blevins, N.H. (2017), “Anatomy-Specific Virtual Reality Simulation in Temporal Bone Dissection: Perceived Utility and Impact on Surgeon Confidence”, Otolaryngology--head and neck surgery official journal of American Academy of Otolaryngology-Head and Neck Surgery, Vol. 156 No. 6, pp. 11421149. https://dx.doi.org/10.1177/0194599817691474.CrossRefGoogle ScholarPubMed
Lyrath, F., Stechert, C. and Ahmed, S.I.-U. (2023), “Application of Augmented Reality (AR) in the Laboratory for Experimental Physics”, Procedia CIRP, Vol. 119, pp. 170175. https://dx.doi.org/10.1016/j.procir.2023.03.089.CrossRefGoogle Scholar
Mack, O., Khare, A., Krämer, A. and Burgartz, T. 2016, Managing in a VUCA World, Springer International Publishing, Cham. https://dx.doi.org/10.1007/978-3-319-16889-0.CrossRefGoogle Scholar
Reiser, R.A. (2007), Trends and issues in instructional design and technology, Pearson/Merrill Prentice Hall, Upper Saddle River, N.J.Google Scholar
Reiser, R.A. and Dempsey, J.V. (2018), Trends and issues in instructional design and technology, Pearson, New York, NY.Google Scholar
Retnanto, A., Fadlelmula, M., Alyafei, N. and Sheharyar, A. (2019), “Active Student Engagement in Learning - Using Virtual Reality Technology to Develop Professional Skills for Petroleum Engineering Education”, SPE Annual Technical Conference and Exhibition. https://dx.doi.org/10.2118/195922-MS.CrossRefGoogle Scholar
Scholten, J. and Buehler, K. (2017), Studie - Einsparpotenziale durch Virtual und Augmented Reality in deutschen Unternehmen, Rheinische Fachhochschule Köln. Available at: https://www.rfh-koeln.de/sites/rfh_koelnDE/myzms/content/e380/e1184/e36085/e40464/e40466/VR-Studie-Final2_ger.pdfGoogle Scholar
Thomas, O., Metzger, D. and Niegemann, H. 2018, Digitalisierung in der Aus- und Weiterbildung, Springer Berlin Heidelberg, Berlin, Heidelberg. https://dx.doi.org/10.1007/978-3-662-56551-3.CrossRefGoogle Scholar
van Merriënboer, J. 2019, The Four-Component Instructional Design Mode: An Overview of its Main Design Principles, Maastricht.Google Scholar
West, M. (1996), “Reflexivity and work group effectiveness: a conceptual integration.” In: The handbook of work group psychology, Wiley, Chichester, pp. 555579Google Scholar
Zabel, C. and Telkmann, V. (2021), Cross Reality (XR) in Deutschland: Struktur, Potenziale und Bedarfe der deutschen Virtual Reality-, Augmented Reality- und Mixed Reality-Branche, Nomos, Baden-BadenCrossRefGoogle Scholar