Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T18:19:35.219Z Has data issue: false hasContentIssue false

Applying a product modularization approach on the case of a battery pack

Published online by Cambridge University Press:  16 May 2024

Julia Beibl*
Affiliation:
Hamburg University of Technology, Germany
Katharina Zumach
Affiliation:
Hamburg University of Technology, Germany
Sven Wehrend
Affiliation:
Hamburg University of Technology, Germany
Marc Züfle
Affiliation:
Hamburg University of Technology, Germany
Eugen Hein
Affiliation:
Hamburg University of Applied Sciences, Germany
Benedikt Plaumann
Affiliation:
Hamburg University of Applied Sciences, Germany
Dieter Krause
Affiliation:
Hamburg University of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When designing battery packs, opposing target-conflicts and design goals arise due to the different disciplines involved in the development process. Looking at the available technologies for battery pack design, different solutions can be found on the market. The development of a battery pack for use in various scenarios therefore presents an interesting use case to evaluate product modularisation approaches. Hence, this paper discusses the application of the Integrated PKT Approach based on a fictious use case of a modular battery pack to derive potential starting points for its improvement.

Type
Design Methods and Tools
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Arora, Shashank (2017): Design of a Modular Battery Pack for Electric Vehicles. Dissertation. Swinburne University of Technology, Hawthorn, Australia. Centre for Sustainable Infrastructure.Google Scholar
Arora, Shashank; Kapoor, Ajay; Shen, Weixiang (2018): Application of Robust Design Methodology to Battery Packs for Electric Vehicles: Identification of Critical Technical Requirements for Modular Architecture. In: Batteries 4 (3), S. 30. https://dx.doi.org/10.3390/batteries4030030.Google Scholar
Brown, Jason C.; Robertson, A. John; Serpento, Stan T. (2002): Motor vehicle structures. Concepts and fundamentals. Oxford: Butterworth-Heinemann (Automotive engineering).Google Scholar
Christen, Rouven; Rizzo, Gerhard; Gadola, Alfred; Stöck, Max (2017): Test Method for Thermal Characterization of Li-Ion Cells and Verification of Cooling Concepts. In: Batteries 3 (4), S. 3. https://dx.doi.org/10.3390/batteries3010003.Google Scholar
Eigner, Martin; Roubanov, Daniil; Zafirov, Radoslav (2014): Modellbasierte virtuelle Produktentwicklung. Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Eppinger, Steven D.; Joglekar, Nitin R.; Olechowski, Alison; Teo, Terence (2014): Improving the systems engineering process with multilevel analysis of interactions. In: AIEDAM 28 (4), S. 323337. https://dx.doi.org/10.1017/S089006041400050X.Google Scholar
Erixon, Gunnar (1998): Modular function deployment. A method for product modularisation. Dissertation. The Royal Institute of Technology, Stockholm. Dept. of Manufacturing Systems.Google Scholar
Erixon, Gunnar; Yxkull, Alex von; Arnström, Anders (1996): Modularity – the Basis for Product and Factory Reengineering. In: CIRP Annals 45 (1), S. 16. https://dx.doi.org/10.1016/S0007-8506(07)63005-4.Google Scholar
Etxandi-Santolaya, Maite; Canals Casals, Lluc; Amante García, Beatriz; Corchero, Cristina (2023a): Circular Economy-Based Alternatives beyond Second-Life Applications: Maximizing the Electric Vehicle Battery First Life. In: WEVJ 14 (3), S. 66. https://dx.doi.org/10.3390/wevj14030066.Google Scholar
Etxandi-Santolaya, Maite; Canals Casals, Lluc; Montes, Tomás; Corchero, Cristina (2023b): Are electric vehicle batteries being underused? A review of current practices and sources of circularity. In: Journal of environmental management 338, S. 117814. https://dx.doi.org/10.1016/j.jenvman.2023.117814.CrossRefGoogle ScholarPubMed
Fang, Xiangfan (2023): Karosserieentwicklung und -Leichtbau. Eine ganzheitliche Betrachtung von Design über Konzept- und Materialauswahlprinzipien bis zur Auslegung und Fertigung. Berlin, Heidelberg: Springer Vieweg. Online verfügbar unter https://link.springer.com/978-3-662-67117-7.CrossRefGoogle Scholar
Golubkov, Andrey W.; Fuchs, David; Wagner, Julian; Wiltsche, Helmar; Stangl, Christoph; Fauler, Gisela et al. (2014): Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. In: RSC Adv 4 (7), S. 36333642. https://dx.doi.org/10.1039/C3RA45748F.Google Scholar
Gusig, Lars-Oliver; Kruse, Arne (2010): Fahrzeugentwicklung im Automobilbau. Aktuelle Werkzeuge für den Praxiseinsatz ; mit 28 Tabellen und 55 Übungsfragen. München: Hanser (Fahrzeugtechnik).CrossRefGoogle Scholar
Heinzen, Till; Plaumann, Benedikt; Kaatz, Marcus (2023): Influences on Vibration Load Testing Levels for BEV Automotive Battery Packs. In: Vehicles 5 (2), S. 446463. https://dx.doi.org/10.3390/vehicles5020025.Google Scholar
Helander, Harald; Ljunggren, Maria (2023): Battery as a service: Analysing multiple reuse and recycling loops. In: Resources, Conservation and Recycling 197, S. 107091. https://dx.doi.org/10.1016/j.resconrec.2023.107091.Google Scholar
Jossen, Andreas; Weydanz, Wolfgang (2021): Moderne Akkumulatoren richtig einsetzen. 2. überarbeitete Auflage, unverändert zur 2. Auflage vom Februar 2019. Göttingen: MatrixMedia Verlag.Google Scholar
Kipp, Thomas; Blees, Christoph; Krause, Dieter (2010): Anwendung einer integrierten Methode zur Entwicklung modularer Produktfamilien. In: Krause, Dieter; Paetzold, Kristin; Wartzack, Sandro (eds) Proceedings of the 21st symposium on design for X, pp 157168.Google Scholar
Krause, Dieter; Gebhardt, Nicolas (2023): Methodical Development of Modular Product Families. Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Mertens, Kai G.; Rennpferdt, Christoph; Greve, Erik; Krause, Dieter; Meyer, Matthias (2023): Reviewing the intellectual structure of product modularization: Toward a common view and future research agenda. In: J of Product Innov Manag 40 (1), S. 86119. https://dx.doi.org/10.1111/jpim.12642.Google Scholar
Otto, Kevin; Hölttä-Otto, Katja; Simpson, Timothy W.; Krause, Dieter; Ripperda, Sebastian; Ki Moon, Seung (2016): Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development. In: Journal of Mechanical Design 138 (7), Artikel 071101. https://dx.doi.org/10.1115/1.4033654.CrossRefGoogle Scholar
Picatoste, Aitor; Justel, Daniel; Mendoza, Joan Manuel F. (2022): Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines. In: Renewable and Sustainable Energy Reviews 169, S. 112941. https://dx.doi.org/10.1016/j.rser.2022.112941.Google Scholar
Plaumann, Benedikt (2022): Towards Realistic Vibration Testing of Large Floor Batteries for Battery Electric Vehicles (BEV). In: Sound&Vibration 56 (1), S. 119. https://dx.doi.org/10.32604/sv.2022.018634.Google Scholar
Richardson, Katherine; Steffen, Will; Lucht, Wolfgang; Bendtsen, Jørgen; Cornell, Sarah E.; Donges, Jonathan F. et al. (2023): Earth beyond six of nine planetary boundaries. In: Science advances 9 (37), eadh2458. https://dx.doi.org/10.1126/sciadv.adh2458.Google ScholarPubMed
Rothgang, Susanne; Baumhöfer, Thorsten; van Hoek, Hauke; Lange, Tobias; Doncker, Rik W. de; Sauer, Dirk Uwe (2015): Modular battery design for reliable, flexible and multi-technology energy storage systems. In: Applied Energy 137, S. 931937. https://dx.doi.org/10.1016/j.apenergy.2014.06.069.Google Scholar
Simpson, Timothy W.; Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja (2014): Advances in Product Family and Product Platform Design. New York, NY: Springer New York.CrossRefGoogle Scholar
Warner, John (2015): The handbook of lithium-ion battery pack design. Chemistry, components, types and terminology. Amsterdam, Boston, Heidelberg: Elsevier (Chemical engineering).Google Scholar
Xu, Huanwei; Zhang, Xin; Xiang, Ge; Li, Hao (2021): Optimization of liquid cooling and heat dissipation system of lithium-ion battery packs of automobile. In: Case Studies in Thermal Engineering 26, S. 101012. https://dx.doi.org/10.1016/j.csite.2021.101012.Google Scholar
Zhu, Juner; Koch, Marco Miguel; Lian, Junhe; Li, Wei; Wierzbicki, Tomasz (2020): Mechanical Deformation of Lithium-Ion Pouch Cells under In-Plane Loads—Part I: Experimental Investigation. In: J. Electrochem. Soc. 167 (9), S. 90533. https://dx.doi.org/10.1149/1945-7111/ab8e83.Google Scholar