Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T23:42:18.221Z Has data issue: false hasContentIssue false

An integrated survey-simulation approach for exoskeleton performance estimation

Published online by Cambridge University Press:  16 May 2024

Niccolò Becattini*
Affiliation:
Politecnico di Milano, Italy
Luca Patriarca
Affiliation:
Politecnico di Milano, Italy
Diego Scaccabarozzi
Affiliation:
Politecnico di Milano, Italy
Paolo Parenti
Affiliation:
Politecnico di Milano, Italy
Andrea Dal Prete
Affiliation:
Politecnico di Milano, Italy
Marta Gandolla
Affiliation:
Politecnico di Milano, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper presents a hybrid user-centred/simulation approach to populate the design specification. It presents an application in the field of exoskeleton design, with the final goal to support workers to carry out their professional tasks. More than 100 professionals (mostly health workers) participated in the survey. The qualitative requirements were extracted are then tested in simulation environments. The approach proved to generate meaningful results for product concept generation. Beyond the expectations, the simulation also showed more adequate product architectures.

Type
Industrial Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Altavilla, S., Becattini, N., Fiorineschi, L., & Rotini, F. (2022). Effectiveness of different requirements checklists for novice designers. Journal of Integrated Design and Process Science, 26(1), 45-69. https://doi.org/10.3233/JID-210015CrossRefGoogle Scholar
Arjmand, N., Plamondon, A., Shirazi-Adl, A., Parnianpour, M., & Larivière, C. (2012). Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two- handed lifting activities. Clinical Biomechanics, 27(6), 537-544. https://doi.org/10.1016/j.clinbiomech.2011.12.015.CrossRefGoogle ScholarPubMed
Bangor, A., Kortum, P., Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114123Google Scholar
Bernard, B. P. (1997). Musculoskeletal disorders and workplace factors. A critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back. U.S. Department of Health. https://doi.org/10.26616/NIOSHPUB97141CrossRefGoogle Scholar
Borg, G. (1982). Psychophysical bases of perceived exertion. Medicine Science in Sports Exercise, 14(5), 377381. insights.ovid.comCrossRefGoogle ScholarPubMed
Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics. 54, 212217. https://doi.org/10.1016/j.apergo.2015.12.003CrossRefGoogle ScholarPubMed
Borovac, B. et al. (2017). Humanoid Robots. https://open.uns.ac.rs/handle/123456789/2494Google Scholar
Bruno, A.G., Bouxsein, M.L. & Anderson, D.E. (2015). Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J Biomech Eng; 137(8). 10.1115/1.4030408.CrossRefGoogle ScholarPubMed
Chan, L. K., & Wu, M. L. (2002). Quality function deployment: A literature review. European journal of operational research, 143(3), 463-497 https://doi.org/10.1016/S0377-2217(02)00178-9CrossRefGoogle Scholar
Damsgaard, M., Rasmussen, J., Tørholm, S., Surma, C.E. & de Zee, M. (2006). Analysis of musculoskeletal systems in the AnyBody Modeling System, Simulation Modelling Practice and Theory, 14(8), 1100-1111, https://doi.org/10.1016/j.simpat.2006.09.001.CrossRefGoogle Scholar
Bionics, Ekso. (2016). Ekso Works Vest. In Exoskeleton Report. https://exoskeletonreport.com/product/ekso-works-vest/Google Scholar
Hauser, J. R., & Clausing, D. (1988). The house of quality.Google Scholar
Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., O'Sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125131. https://doi.org/10.1016/j.apergo.2017.11.004CrossRefGoogle ScholarPubMed
Looze, M. P. de, Bosch, T., Krause, F., Stadler, K. S., O'Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59 (5), 671681. https://doi.org/10.1080/00140139.2015.1081988CrossRefGoogle ScholarPubMed
McGill, S. M., Norman, R. W. Cholewicki, J. (1996). A simple polynomial that predicts low-back compression during complex 3-D tasks. Ergonomics, 39(9), 11071118. https://doi.org/10.1080/00140139608964532CrossRefGoogle ScholarPubMed
Näf, M. B., Koopman, A. S., Baltrusch, S., Rodriguez-Guerrero, C., Vanderborght, B., Lefeber, D. (2018). Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. Frontiers in Robotics and AI, 5, 72. https://doi.org/10.3389/frobt.2018.00072CrossRefGoogle ScholarPubMed
NIOSH. (2018). Work practices guide for manual lifting. https://doi.org/10.26616/NIOSHPUB81122CrossRefGoogle Scholar
Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering Design: A Systematic Approach. Springer-Verlag, London ISBN: 978-1-84628-318-5Google Scholar
Saldivar, A. A. F., Li, Y., Chen, W., Zhan, Z., Zhang, J., & Chen, L. Y. (2015). Industry 4.0 with cyber-physical integration: A design and manufacture perspective. 2015 21st International Conference on Automation and Computing (ICAC), 16. https://doi.org/10.1109/IConAC.2015.7313954CrossRefGoogle Scholar
SuitX (US Bionics) Emeryville, California,. (2016). backX. In Exoskeleton Report. https://exoskeletonreport.com/product/backx/Google Scholar
Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T., Monica, L., Anastasi, S., Caldwell, D. G., Ortiz, J. (2019). Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 237249. https://doi.org/10.1080/24725838.2019.1626303CrossRefGoogle Scholar
Van Engelhoven, L., Poon, N., Kazerooni, H., Barr, A., Rempel, D., Harris-Adamson, C. (2018). Evaluation of an adjustable support shoulder exoskeleton on static and dynamic overhead tasks. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 804808. https://doi.org/10.1177/1541931218621184CrossRefGoogle Scholar
Vukobratovic, M., Juricic, D. (1968). Contribution to the Synthesis of Biped Gait. IFAC Proceedings Volumes, 2(4), 469478. https://doi.org/10.1016/S1474-6670(17)68891-8CrossRefGoogle Scholar