Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:24:58.392Z Has data issue: false hasContentIssue false

An Approach to Transfer Biological Solutions Based on the Interaction of Mechanisms to Technical Products

Published online by Cambridge University Press:  26 May 2022

M. Bartz*
Affiliation:
Engineering Design, Faculty of Engineering, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
E. Uttich
Affiliation:
Product Development, Institute Product and Service Engineering, Faculty Mechanical Engineering, Ruhr-University Bochum, Germany
K. Wanieck
Affiliation:
Faculty of Applied Informatics, Deggendorf Institute of Technology, Teaching Area Biomimetics and Innovation, Germany
B. Bender
Affiliation:
Product Development, Institute Product and Service Engineering, Faculty Mechanical Engineering, Ruhr-University Bochum, Germany
S. Wartzack
Affiliation:
Engineering Design, Faculty of Engineering, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Biological solutions are often used for developing technically innovative products in a biomimetic process. However, biological solutions do not always make it into a successful technical product, e.g. due to a lack of knowledge on the mechanisms of action. A new approach is presented for transferring biological solutions based on complex mechanisms of action. It is based on mathematical optimization methods and applied to the lightweight design of the musculoskeletal system. Finally, first technical implementations in the field of robotics, among others, will be presented.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Ahmed-Kristensen, S., Christensen, B.T. and Lenau, T. (2014): Naturally original: Stimulating creative design through biological analogies and Random images, International Design Conference, Dubrovnik, pp. 427436.Google Scholar
Bartz, M., Gößling, R., Remus, R., Schafran, T., & Bender, B. (2017). Entwicklung eines bioinspirierten Gelenkarmroboters mithilfe der Kopplung von Mehrkörpersimulation und Topologieoptimierung. In Conference Proceedings: 35. CADFEM ANSYS Simulation Conference. Koblenz.Google Scholar
Bartz, M., Gößling, R., Remus, R., & Bender, B. (2018a): Development of a bioinspired approach for the design of kinematic chains. In Mario Storga, Neven Pavkovic, Nenad Bojcetic, Stanko Skec, Dorian Marjanovic (Eds.), Proceedings of International Design Conference, DESIGN (pp. 975984). Dubrovnik, HR: Faculty of Mechanical Engineering and Naval Architecture. DOI: 10.21278/idc.2018.0330Google Scholar
Bartz, M., Brand, H., & Bender, B. (2018b): Examining lightweight design potential of the human musculoskeletal system by using the example of an articulated arm robot. In Book of Abstracts: 1. Symposium for Lightweight Design in Product Development. ETH Zürich, CH.Google Scholar
Bartz, M., Remus, R., & Bender, B. (2018c): Anwendung der Leichtbauprinzipien des Muskel-Skelett-Systems auf einen Gelenkarmroboter. Konstruktion, 7-8-2018, 84-90.Google Scholar
Bartz, M., Uttich, E., & Bender, B. (2019): Transfer of lightweight design principles from the musculoskeletal system to an engineering context. Design Science, 5. https://dx.doi.org/10.1017/dsj.2019.17Google Scholar
Bhushan, B. (2015): Perspective: Science and technology policy—What is at stake and why should scientists participate? Sci. Public Policy 2015, 42, 887900. 10.1093/scipol/scv005CrossRefGoogle Scholar
Chirazi, J.; Wanieck, K.; Fayemi, P.-E.; Zollfrank, C.; Jacobs, S. (2019): What Do We Learn from Good Practices of Biologically Inspired Design in Innovation?. Applied Sciences. 9. 650. 10.3390/app9040650Google Scholar
Cohen, Y. H.; Reich, Y. (2016): Biomimetic Design Method for Innovation And Sustainability. Switzerland: Springer International Publishing AG. 10.1007/978-3-319-33997-9Google Scholar
ISO, DIN 18459:2015: Bionik – Bionische Strukturoptimierung. Beuth Verlag, Berlin, 2016.Google Scholar
Frost, H. M.: Bone's mechanostat: A 2003 update. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, 2003(275(2)):1081–1101, 2003.Google Scholar
Domel, G. D.; Saadat, M.; Weaver, J.C.; Haj-Hariri, H.; Bertoldi, K.; Lauder, G.V. (2018): Shark skin-inpired designs that improve aerodynamic performance. In: Journal of The Royal Society Interface. https://dx.doi.org/10.1098/rsif.2017.0828.CrossRefGoogle Scholar
Fish, F.; Beneski, J. T. (2014): Evolution and Bio-Inspired Design: Natural Limitations, in Goel et al. 2014.Google Scholar
Fratzl-Zelman, N.; Misof, B. M.; Roschger, P. (2011): Das Knochenmaterial: Ein Nano-Komposit aus Mineral und Kollagen. Journal für Mineralstoffwechsel, 2011(18 (3)):110–117, 2011.Google Scholar
Gößling, R.; Herzog, M.; Witzel, U.; Bender, B. (2014): Compensation of bending moments as a nature-inspired design principle? 2014.Google Scholar
Graeff, E.; Maranzana, N.; Aoussat, A. (2019): Engineers’ and Biologists’ Roles during Biomimetic Design Processes, Towards a Methodological Symbiosis. In: Proc. Int. Conf. Eng. Des. 1 (1), S. 319–328. https://dx.doi.org/10.1017/dsi.2019.35.Google Scholar
Farzaneh, Hashemi, Helms, H., Münzberg, M. K., Lindemann, C., U. (2016): Technology-Pull and Biology-Push approaches in bio-inspired design. Comparing results from empirical studies on student teams. In: Proceedings of the DESIGN 2018, 231-240.Google Scholar
Henning, F., & Moeller, E. (Eds.). (2020): Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung. Carl Hanser Verlag GmbH Co KG.Google Scholar
Jacobs, S. R., Nichol, E. C., & Helms, M. E. (2014): “Where are we now and where are we going?” The BioM innovation database. Journal of Mechanical Design, 136(11), 111101. 10.1115/1.4028171Google Scholar
Keshwani, S., Lenau, T.A., Ahmed-Kristensen, S. and Chakrabarti, A. (2017): “Comparing novelty of designs from biological-inspiration with those from brainstorming”, Journal of Engineering Design, Vol. 28 No. 10–12, pp. 654680. 10.1080/09544828.2017.1393504Google Scholar
Kummer, B. (2005): Biomechanik: Form und Funktion des Bewegungsapparates. Deutscher Ärzte-Verlag GmbH, Köln, 2005.Google Scholar
Lenau, T. A. (2019): Application Search in Solution-Driven Biologically Inspired Design. In: Proc. Int. Conf. Eng. Des. 1 (1), S. 269–278. https://dx.doi.org/10.1017/dsi.2019.30.CrossRefGoogle Scholar
Lenau, T.; Dentel, A.; Ingvarsdóttir, Þ.; Guðlaugsson, T. (2010): Engineering design of an adaptive leg prosthesis using biological principles. In: Proceedings of the Design 2010, S. 331340.Google Scholar
Lutz, F. (2016): Einflüsse individueller Muskelkräfte auf dehnungsinduzierten femoralen Knochenumbau. Berichte aus der Biomechatronik Band 13, Universitätsverlag Ilmenau, 2016.Google Scholar
Mattheck, C. (1997): Design in der Natur. Rombach GmbH + Co Verlagshaus KG, Freiburg, 1997. ISBN 3793091503.Google Scholar
McInerney, S.J.; Khakipoor, B.; Garner, A.M.; Houette, T.; Unsworth, C. K.; Rupp, A.; Weiner, N.; Vincent, J. F. V.; Nagel, J. K. S.; Niewiarowski, P.H. (2019): E2BMO: Facilitating User Interaction with a BioMimetic Ontology via Semantic Translation and Interface Design. In: Designs 2018, 2, 53. https://dx.doi.org/10.3390/designs2040053.CrossRefGoogle Scholar
Nachtigall, Werner (2010): Bionik als Wissenschaft. Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Nagel, J. K., Nagel, R. L., & Stone, R. B. (2011): Abstracting biology for engineering design. International Journal of Design Engineering, 4(1), 2340. https://dx.doi.org/10.1504/IJDE.2011.041407Google Scholar
Pauwels, F. (1965): Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer-Verlag, Berlin, Heidelberg, New York, 1965.Google Scholar
Roux, W. (1985): Gesammelte Abhandlungen über Entwickelungsmechanik der Organismen. Verlag von Wilhelm Engelmann, Leipzig, 1895.Google Scholar
Schünke, M. (2013): Funktionelle Anatomie: Topographie und Funktion des Bewegungssystems. Thieme, Stuttgart, 2., Auflage edition, 2013. ISBN 9783131185723.Google Scholar
Shabana, A. A. (2016): Computational dynamics. J. Wiley & Sons, Chichester, U.K., 3rd ed. edition, 2016. ISBN 978-0-470-68615-7.Google Scholar
Snell-Rood, E. (2016): Interdisciplinarity: Bring biologists into biomimetics. Nature News, 529(7586), 277.Google ScholarPubMed
Speck, T.; Erb, R. (2010): Prozessketten in Natur und Wirtschaft. In: Klaus-Stephan Otto und Thomas Speck (Hg.): Darwin meets Business. Wiesbaden: Gabler, S. 95–112. 10.1007/978-3-8349-6381-9_10Google Scholar
Sverdlova, N.; Witzel, U. (2010): Principles of determination and verification of muscle forces in the human musculosketal system: Muscle forces to minimise bending stresses. Journal of biomechanics, (43(3)):387–396, 2010. ISSN 0021-9290.CrossRefGoogle Scholar
Tarantola, A. (2005): Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005. ISBN 0-89871-572-5. 10.1137/1.9780898717921Google Scholar
Uttich, E.; Bartz, M.; Bender, B. (2018): Review of the mechanisms of action in the musculoskeletal system as a basis for new simulation models. 8th World Congress of Biomechanics, 8-12 July 2018, Dublin, Ireland, 2018.Google Scholar
Uttich, E., Bartz, M.; Bender, B. (2019): Factors preventing the use of a lightweight design workflow that is inspired by the human locomotive system. In Proceedings of the International Conference on Engineering Design, ICED (pp. 27052714). Delft, NL: Cambridge University Press. DOI: https://dx.doi.org/10.1017/dsi.2019.277CrossRefGoogle Scholar
Uttich, E., Bartz, M.; Bender, B. (2020a): Examining the tension chording principle for a beam under torsion load. In Proceedings of the Design Society: DESIGN Conference (pp. 431440). DOI: 10.1017/dsd.2020.60Google Scholar
Uttich, E.; Bender, B. (2020): An approach to compare tension chording concepts by using combined multibody and finite element simulation, in: Krause, D., Paetzold, K., Wartzack, S. (Eds.), Proceedings of the 31st Symposium Design for X. Presented at the Symposium Design for X, pp. 1120. 10.35199/dfx2020.2Google Scholar
Uttich, E.; Gößling, R.; Bartz, M.; Bender, B. (2017): Inversdynamische Berechnungen der Muskelkräfte am Glenohumeralgelenk unter der Prämisse der Biegeminimierung. 35. CADFEM ANSYS Simulation Conference: die Fachkonferenz zur Numerischen Simulation in der Produktentwicklung, 15.-17. November 2017 in Koblenz, 2017.Google Scholar
VDI 6220 -1:2021: Biomimetics - Fundamentals, conception, and strategy. Beuth-Verlag, Berlin, 2021.Google Scholar
Witzel, U.; Preuschoft, H. (2005): Finite-element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, 2005(283(2)):391–401, 2005. 10.1002/ar.a.20174Google Scholar
Wolff, J. (1892): Das Gesetz der Transformation der Knochen (Reprint). Pro Business, Berlin 2010, 1892.Google Scholar