Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T12:41:24.983Z Has data issue: false hasContentIssue false

USING KINEMATIC ANALYSIS TO DEVELOP A NEW TOOTH SYSTEM FOR GEARINGS WITH VARIABLE SHAFT ANGLE

Published online by Cambridge University Press:  11 June 2020

M. Grafinger*
Affiliation:
TU Wien, Austria

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The belt units of an omnidirectional treadmill need to be connected for a continuous rotational transmission with variating axes angle. Torus gearing is not appropriate due to kinematic reasons, therefore a crown gearing with cone-shaped teeth is proposed. Parameter analysis on a virtual kinematics model show that depending on the cone angle, overlaps occur at different axis angles. Consequently, the shape of the teeth is modified with tip and foot relief and optimized so that no overlapping of the teeth occurs while a large path of contact is provided.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Rudelstorfer, E. (2018), “Omnidirectional treadmill”, International patent application WO2018119485.Google Scholar
Basstein, G. and Sijtstra, A. (1993), “New developments in design, manufacturing and application of Cylkro-(Face) gears”, A.G.M.A. Technical paper, 93FTM7Google Scholar
Tsai, S.J. (1997), “Vereinheitlichtes System evolventischer Zahnräder – Auslegung von Zylindrischen”, Konischen, Kronen- und Torusrädern, Dissertation TU Braunschweig 1997.Google Scholar
Roth, K. (1998), “Torusverzahnung für Achswinkeländerung während des Laufs”, In: Karlheinz, R. (Ed.), Zahnradtechnik Evolventen-Sonderverzahnungen zur Getriebeverbesserung, Springer, Berlin Heidelberg, pp. 359441. https://doi.org/10.1007/978-3-642-58890-7Google Scholar
Burkard, R.E. and Zimmermann, U.T. (2012), Einführung in die Mathematische Optimierung, Springer, Berlin Heidelberg 2012, https://doi.org/10.1007/978-3-642-28673-5CrossRefGoogle Scholar
Philipp, M.H. (2014), Mathematisch-Technische Optimierung von Verzahnungsgeometrien, Disertation, Technische Universität München 2014Google Scholar
Seol, I.H. and Kim, D.H. (1998), “The kinematic and dynamic analysis of crowned spur gear drive”, Computer Methods in Applied Mechanics and Engineering, Vol. 167 No. 1, pp. 109118.CrossRefGoogle Scholar
Li, H. et al. (2014), “The kinematic synthesis of involute spiral bevel gears and their tooth contact analysis”, Mechanism and Machine Theory, Vol. 79, pp. 141157.CrossRefGoogle Scholar
Behnisch, S. (2003), Digital Mockup mit CATIA V5, Carl Hanser Verlag, München. ISBN 978-3-446-22379-0Google Scholar
Piegl, L. and Tiller, W. (1997), The nurbs book, Springer, Berlin. ISBN 978-3-540-61545-3CrossRefGoogle Scholar
Weiss, D. (2010), “Feature-based spline optimization in CAD”, Structural and Multidisciplinary Optimization, Vol. 42 No. 4, pp. 619631.CrossRefGoogle Scholar