Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T23:36:36.776Z Has data issue: false hasContentIssue false

QUALITATIVE MODELLING IN EMBODIMENT DESIGN - INVESTIGATING THE CONTACT AND CHANNEL APPROACH THROUGH ANALYSIS OF PROJECTS

Published online by Cambridge University Press:  11 June 2020

P. Grauberger*
Affiliation:
Karlsruhe Institute of Technology, Germany
F. Bremer
Affiliation:
Karlsruhe Institute of Technology, Germany
C. Sturm
Affiliation:
Karlsruhe Institute of Technology, Germany
K. Hoelz
Affiliation:
Karlsruhe Institute of Technology, Germany
H. Wessels
Affiliation:
Karlsruhe Institute of Technology, Germany
T. Gwosch
Affiliation:
Karlsruhe Institute of Technology, Germany
R. Wagner
Affiliation:
Karlsruhe Institute of Technology, Germany
G. Lanza
Affiliation:
Karlsruhe Institute of Technology, Germany
A. Albers
Affiliation:
Karlsruhe Institute of Technology, Germany
S. Matthiesen
Affiliation:
Karlsruhe Institute of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Purposeful qualitative modelling of embodiment function relations is a challenge in embodiment design. This contribution investigates the applicability and usefulness of the Contact and Channel Approach as a qualitative modelling approach in a survey study. From 23 development and research projects, advantages and challenges regarding applicability and usefulness are identified. A further result is that many different models are used additionally to the Contact and Channel Approach. Based on the findings, research potential for optimization and development of links to other models emerges.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Albers, A. and Matthiesen, S. (2002), “Konstruktionsmethodisches Grundmodell zum Zusammenhang von Gestalt und Funktion technischer Systeme”, in Konstruktion - Zeitschrift für Produktentwicklung und Ingenieur-Werkstoffe, Vol. 54, Springer-VDI-Verlag, Düsseldorf, pp. 5560.Google Scholar
Andreasen, M.M., Hansen, C.T. and Cash, P. (2015), Conceptual Design: Interpretations, Mindset and Models, Springer International Publishing, Cham, Switzerland.CrossRefGoogle Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a design research methodology, Springer, Dordrecht.CrossRefGoogle Scholar
Buur, J. and Andreasen, M.M. (1989), “Design models in mechatronic product development”, Design Studies, Vol. 10 No. 3, pp. 155162.CrossRefGoogle Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th edition, Carl Hanser Verlag GmbH & Co. KG, München, Wien.CrossRefGoogle Scholar
Erbe, T. (2018), “CPM-Modeling in industry - a reflection”, in 29. DFX-Symposium 2018, Tutzing, Germany.Google Scholar
Gladysz, B. and Albers, A. (2018), “How Do C&C²-Models Improve Efficiency, Comprehensibility and Scope In Failure Analysis - an Empirical Study Based on Two Live-Labs”, in 16th International Design Conference DESIGN, Dubrovnik, Croatia.CrossRefGoogle Scholar
Grauberger, P. et al. (2019), “The contact and channel approach – 20 years of application experience in product engineering”, Journal of Engineering Design. https://dx.doi.org/10.1080/09544828.2019.1699035Google Scholar
Günther, M. and Velten, K. (2014), Mathematische Modellbildung und Simulation Eine Einführung für Wissenschaftler, Ingenieure und Ökonomen, John Wiley & Sons, Incorporated, Berlin, Germany.Google Scholar
Haefner, B. and Lanza, G. (2017), “Function-oriented measurements and uncertainty evaluation of micro-gears for lifetime prognosis”, CIRP Annals, Vol. 66 No. 1, pp. 475478.CrossRefGoogle Scholar
Kohn, A. (2014), “Entwicklung einer Wissensbasis für die Arbeit mit Produktmodellen”, Dissertation, Lehrstuhl für Produktentwicklung, Technische Universität München, München, Germany.Google Scholar
Matthiesen, S. (2002), “Ein Beitrag zur Basisdefinition des Elementmodells ‛Wirkflächenpaare & Leitstützstrukturen’ zum Zusammenhang von Funktion und Gestalt technischer Systeme”, Dissertation, University of Karlsruhe (TH), Karlsruhe, Germany.Google Scholar
Matthiesen, S. (2011), “Seven Years of Product Development in Industry - Experiences and Requirements for Supporting Engineering Design with ‛Thinking Tools’”, in 18th International Conference on Engineering Design, Copenhagen, Denmark.Google Scholar
Matthiesen, S. (2020), “Prozess und Methoden der Gestaltung”, in Bender, B. and Gericke, K. (Eds.), Pahl/Beitz Konstruktionslehre, 9th ed., Springer-Verlag GmbH. Berlin Heidelberg, Germany. In print.Google Scholar
Matthiesen, S. et al. (2019a), “Product Models in Embodiment Design - An Investigation of Challenges and Opportunities”, Springer Nature Applied Sciences, No. 1, p. 1078.Google Scholar
Matthiesen, S., Grauberger, P. and Schrempp, L. (2019b), “Extended Sequence Modelling in Design Engineering – Gaining and Documenting Knowledge about Embodiment Function Relations with the C&C²-Approach”, in 22nd International Conference on Engineering Design ICED19, Delft, The Netherlands.Google Scholar
Matthiesen, S. et al. (2018), “From Reality to Simulation – Using the C&C²-Approach to Support the Modelling of a Dynamic System”, in Procedia CIRP, Vol. 70, pp. 475480.CrossRefGoogle Scholar
Okoli, C. and Pawlowski, S.D. (2004), “The Delphi method as a research tool: an example, design considerations and applications”, Information & Management, Vol. 42 No. 1, pp. 1529.CrossRefGoogle Scholar
Robbins, N. and Heiberger, R. (2011), “Plotting Likert and other rating scales”, in Proceedings of the 2011 Joint Statistical, Miami, USA, pp. 10581066.Google Scholar
Sokolowski, J.A. and Banks, C.M. (2010), Modeling and Simulation Fundamentals, John Wiley & Sons, Inc., Hoboken, NJ, USA.CrossRefGoogle Scholar
Stachowiak, H. (1973), Allgemeine Modelltheorie, Springer, Wien, New York.CrossRefGoogle Scholar
Suh, N.P. (1998), “Axiomatic Design Theory for Systems”, Res Eng Des, Vol. 10 No. 4, pp. 189209.CrossRefGoogle Scholar
Wagner, R., Haefner, B. and Lanza, G. (2018), “Function-Oriented Quality Control Strategies for High Precision Products”, Procedia CIRP, Vol. 75, pp. 5762.CrossRefGoogle Scholar
Weber, C. (2014), “Modelling Products and Product Development Based on Characteristics and Properties”, in Chakrabarti, A. and Blessing, L.T.M. (Eds.), An Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations, Springer, London, United Kingdom, pp. 327352.CrossRefGoogle Scholar
Yassine, A. and Braha, D. (2003), “Complex Concurrent Engineering and the Design Structure Matrix Method”, Concurrent Engineering, Vol. 11 No. 3, pp. 165176.Google Scholar