Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T18:16:36.607Z Has data issue: false hasContentIssue false

EXAMINING THE TENSION CHORDING PRINCIPLE FOR A BEAM UNDER TORSION LOAD

Published online by Cambridge University Press:  11 June 2020

E. S. Uttich*
Affiliation:
Ruhr-Universität Bochum, Germany
M. Bartz
Affiliation:
Ruhr-Universität Bochum, Germany
B. Bender
Affiliation:
Ruhr-Universität Bochum, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tension chording is a lightweight design principle in the human motion system. More muscles than necessary are available in this system to generate motion. By using these redundant muscles the principle contributes to the lightweight design of the motion segments. The lightweight design benefits of the principle for technical structures loaded with bending torques were shown in prior studies. This paper presents a pilot study on lightweight design benefits of using tension chording for torsion loaded structures.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Ananthanarayanan, A., Azadi, M. and Kim, S. (2012), “Towards a bio-inspired leg design for high-speed running”, Bioinspiration & biomimetics, Vol. 7 No. 4, p. 46005. https://dx.doi.org/10.1088/1748-3182/7/4/046005Google ScholarPubMed
Bartz, M., Brand, H. and Bender, B. (2018a), “Examing lightweight design potential of the human musculoskeletal system by using the example of an articulated arm robot”, Book of Abstracts: 1. Symposium for Lightweight Design in Product Development, Zürich, Switzerland, June 13-15, 2018.Google Scholar
Bartz, M. et al. (2018b), “Development of a bioinspired approach for the design of kinematic chains”, Design 2018: proceedings of the 15th International Design Conference, Dubrovnik, Croatia, May 21-24, 2018, The Design Society, Glasgow, pp. 975984. https://dx.doi.org/10.21278/idc.2018.0330CrossRefGoogle Scholar
Bartz, M., Uttich, E. and Bender, B. (2019), “Transfer of lightweight design principles from the musculoskeletal system to an engineering context”, Design Science, Vol. 5, p. e19. https://dx.doi.org/10.1017/dsj.2019.17CrossRefGoogle Scholar
Degischer, H.-P. and Lüftl, S. (2009), Leichtbau. Prinzipien, Werkstoffauswahl und Fertigungsvarianten, Wiley-VCH (Wiley Online Library), Weinheim. https://dx.doi.org/10.1002/9783527628247Google Scholar
Klein, B. (2013), Leichtbau-Konstruktion. Berechnungsgrundlagen und Gestaltung, Springer, Wiesbaden. https://dx.doi.org/10.1007/978-3-658-02272-3CrossRefGoogle Scholar
Klug, S. et al. (2005), “Design and Application of a 3 DOF Bionic Robot Arm”, AMAM 2005, Illmenau, Germany, September 25-30, 2005.Google Scholar
Mattheck, C. (1997), Design in der Natur, Rombach GmbH & Co Verlagshaus KG, Freiburg.Google Scholar
Möhl, B. (2003), “A Composite Drive with Separate Control of Force and Position”, Proc. of the 11th International Conference on Advanced Robotics 2003 in Coimbra (ICAR 2003), IEEE Robotics and Automation Society, pp. 16061610.Google Scholar
Neilson, P.D. (1993), “The problem of redundancy in movement control. The adaptive model theory approach.” Psychological Research, Vol. 55 No. 2, pp. 99106. https://dx.doi.org/10.1007/BF00419640CrossRefGoogle ScholarPubMed
Pauwels, F. (1965), Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
the Press and Information Office of the Federal Government (2018), German Sustainable Development Strategy, Druck- und Verlagshaus Zarbock GmbH & Co. KG, Berlin.Google Scholar
Reuschel, D. (1999), Untersuchung der Faseranordnung natürlicher Faserverbunde und Übertragung der Ergebnisse auf technische Bauteile mit Hilfe der Finite-Elemente-Methode, [PhD Thesis], Universität Karlsruhe.Google Scholar
Richard, H.A. and Kullmer, G.K. (2014), Biomechanik: Grundlagen und Anwendungen auf den menschlichen Bewegungsapparat, Springer-Verlag, Wiesbaden. https://dx.doi.org/10.1007/978-3-8348-8611-8Google Scholar
Scott, S.H. (2004), “Optimal feedback control and the neural basis of volitional motor control”, Nature Reviews Neuroscience, Vol. 5 No. 7, pp. 532546. https://dx.doi.org/10.1038/nrn1427CrossRefGoogle ScholarPubMed
Uttich, E., Bartz, M. and Bender, B. (2019), “Factors preventing the use of a lightweight design workflow that is inspired by the human locomotive system”, Proceedings of the Design Society: International Conference on Engineering Design, Cambridge University Press, Vol. 1 No. 1, pp. 27052714. https://dx.doi.org/10.1017/dsi.2019.277CrossRefGoogle Scholar
VDI (2019), VDI 6220-1: Biomimetics - Fundamentals, conception and strategy, Berlin.Google Scholar
VDI (2017), VDI 6224-3: Biomimetics - Integrated product development process for biomimetic optimisation, Berlin.Google Scholar
Völkl, H., Franz, M. and Wartzack, S. (2017), “Topologieoptimierung mit transversal isotropem Materialmodell - Produktentwickler auf der Suche nach optimaler Geometrie für Faser-Kunststoff-Verbunde”, DFX 2017: Proceedings of the 28th Symposium Design for X, 4-5 October 2017, Bamburg, Germany, The Design Society, pp. 203214.Google Scholar
Weiner, S. and Wagner, H.D. (1998), “The Material Bone: Structure-Mechanical Function Relations”, Annual Reviews Material Science 1998, Vol. 28, No. 1, pp. 271298. https://dx.doi.org/10.1146/annurev.matsci.28.1.271CrossRefGoogle Scholar
Wiedemann, J. (2007), Leichtbau. Elemente und Konstruktion, Springer (Klassiker der Technik), Berlin, Heidelberg, New York. https://dx.doi.org/10.1007/978-3-540-33657-0Google Scholar
Witte, H. et al. (2000), “Konstruktion vierbeiniger Laufmaschinen anhand biologischer Vorbilder”. Konstruktion, Vol. 9, pp. 4650.Google Scholar
Witzel, U. and Preuschoft, H. (2005), “Finite-element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus”. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, Vol. 283, No. 2, pp. 391401. https://dx.doi.org/10.1002/ar.a.20174CrossRefGoogle ScholarPubMed