The relaxation time for an ergodic Markov process is a measure of the time until ergodicity is reached from its initial state. In this paper the relaxation time for an ergodic truncated birth-death process is studied. It is shown that the relaxation time for such a process on states {0,1, …, N} is the quasi-stationary exit time from the set {,2, …, N{0,1,…, N, N + 1} with two-sided absorption at states 0 and N + 1. The existence of such a dual process has been observed by Siegmund [15] for stochastically monotone Markov processes on the real line. Exit times for birth- death processes with two absorbing states are studied and an efficient algorithm for the numerical evaluation of mean exit times is presented. Simple analytical lower bounds for the relaxation times are obtained. These bounds are numerically accessible. Finally, the sensitivity of the relaxation time to variations in birth and death rates is studied.