Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:25:50.678Z Has data issue: false hasContentIssue false

STOCHASTIC ORDERINGS OF DISCRETE-TIME PROCESSES AND DISCRETE RECORD VALUES

Published online by Cambridge University Press:  01 June 2006

Félix Belzunce
Affiliation:
Departamento Estadística e Investigación Operativa, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain, E-mail: [email protected]
Eva-María Ortega
Affiliation:
Departamento Estadística, Matemáticas e Informática, Centro de Investigación Operativa, Universidad Miguel Hernández, Campus de Orihuela, 03312 Orihuela, Alicante, Spain, E-mail: [email protected]
José M. Ruiz
Affiliation:
Departamento Estadística e Investigación Operativa, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain, E-mail: [email protected]

Abstract

Recently, Pellerey, Shaked, and Zinn [6] introduced a discrete-time analogue of the nonhomogeneous Poisson process. The purpose of this article is to provide some results for stochastic comparisons of the epoch times and the interepoch times of those processes. Also, we show the relationships between these processes and discrete record values and we provide several results for discrete weak record values.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ascher, H. & Feingold, H. (1984). Repairable systems reliability. New York: Marcel Decker.
Karlin, S. & Rinot, Y. (1980). Classes of ordering measures and related correlation inequalities. I. Multivariate totally positive distributions. Journal of Multivariate Analysis 10: 467498.Google Scholar
Lehman, E.L. (1966). Some concepts of dependence. Annals of Mathematical Statistics 37: 11371153.Google Scholar
Nevzorov, V.B. (2001). Records: Mathematical theory. Translations of Mathematical Monographs Vol. 194. Providence, RI: American Mathematical Society.
Nevzorov, V.B. & Balakrishnan, N. (1998). A record of records. In N. Balakrishnan & C.R. Rao (eds.), Handbook of Statistics, Vol. 16. Amsterdam: Elsevier Science, pp. 515570.
Pellerey, F., Shaked, M., & Zinn, J. (2000). Non-homogeneous Poisson processes and logconcavity. Probability in the Engineering and Informational Sciences 14: 353373.Google Scholar
Salvia, A.A. & Bollinger, R.C. (1982). On discrete hazard functions. IEEE Transactions on Reliability 31: 558459.Google Scholar
Shaked, M. & Shanthikumar, J.G. (1994). Stochastic orders and their applications. San Diego: Academic Press.
Shaked, M., Shanthikumar, J.G., & Valdez-Torres, J.B. (1994). Discrete probabilistic orderings in reliability theory. Statistica Sinica 4: 567579.Google Scholar
Shaked, M., Shanthikumar, J.G., & Valdez-Torres, J.B. (1995). Discrete hazard rate functions. Computers and Operations Research 22: 391402.Google Scholar
Shaked, M., Shanthikumar, J.G., & Valdez-Torres, J.B. (1996). Discrete modelling of discrete time reliability systems. In S. Ozekici (ed.), Reliability and maintenance of complex systems, Series F: Computers and Systems Sciences Vol. 154, NATO ASI Series. Berlin: Springer-Verlag, pp. 8396.
Stepanov, A.V. (1992). Limit theorems for weak records. Theory of Probability and its Applications 37: 570574.Google Scholar
Stepanov, A.V. (1993). A characterization theorem for weak records. Theory of Probability and its Applications 38: 762764.Google Scholar
Vervaat, W. (1973). Limit theorems for records from discrete distributions. Stochastic Processes and Their Applications 1: 317334.Google Scholar