No CrossRef data available.
Published online by Cambridge University Press: 11 January 2002
We consider a batch scheduling problem in which the processing time of a batch of jobs equals the maximum of the processing times of all jobs in the batch. This is the case, for example, for burn-in operations in semiconductor manufacturing and other testing operations. Processing times are assumed to be random, and we consider minimizing the makespan and the flow time. The problem is much more difficult than the corresponding deterministic problem, and the optimal policy may have many counterintuitive properties. We prove various structural properties of the optimal policy and use these to develop a polynomial-time algorithm to compute the optimal policy.