Published online by Cambridge University Press: 27 July 2009
The distribution of upward first passage times in skip-free Markov chains can be expressed solely in terms of the eigenvalues in the spectral representation, without performing a separate calculation to determine the eigenvectors. We provide insight into this result and skip-free Markov chains more generally by showing that part of the spectral theory developed for birth-and-death processes extends to skip-free chains. We show that the eigenvalues and eigenvectors of skip-free chains can be characterized in terms of recursively defined polynomials. Moreover, the Laplace transform of the upward first passage time from 0 to n is the reciprocal of the nth polynomial. This simple relationship holds because the Laplace transforms of the first passage times satisfy the same recursion as the polynomials except for a normalization.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.