Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T20:33:29.877Z Has data issue: false hasContentIssue false

PORTFOLIO OPTIMIZATION IN A DEFAULT MODEL UNDER FULL/PARTIAL INFORMATION

Published online by Cambridge University Press:  14 July 2015

Thomas Lim
Affiliation:
Laboratoire de Mathématiques et, Modélisation d'Evry, CNRS, UMR 8071, ENSIIE E-mail: [email protected]
Marie-Claire Quenez
Affiliation:
Laboratoire de Probabilités et, Modèles Aléatoires.CNRS, UMR 7599 Université Paris 7 E-mail: [email protected]

Abstract

In this paper, we consider a financial market with an asset exposed to a risk inducing a jump in the asset price, and which can still be traded after the default time. We use a default-intensity modeling approach, and address in this incomplete market context the problem of maximization of expected utility from terminal wealth for logarithmic, power and exponential utility functions. We study this problem as a stochastic control problem both under full and partial information. Our contribution consists of showing that the optimal strategy can be obtained by a direct approach for the logarithmic utility function, and the value function for the power (resp. exponential) utility function can be determined as the minimal (resp. maximal) solution of a backward stochastic differential equation. For the partial information case, we show how the problem can be divided into two problems: a filtering problem and an optimization problem. We also study the indifference pricing approach to evaluate the price of a contingent claim in an incomplete market and the information price for an agent with insider information.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bellamy, N. (2001). Wealth optimization in an incomplete market driven by a jump-diffusion process. Journal of Mathematical Economics 35: 259287.Google Scholar
2. Callegaro, G., Di Masi, G., & Runggaldier, W. (2006). Portfolio optimization in discontinuous markets under incomplete information. Asia-Pacific Financial Markets 13: 373394.Google Scholar
3. Dellacherie, C. & Meyer, P.-A. (1980). Probabilités et potentiel. Théorie des martingales, Hermann.Google Scholar
4. Detemple, J. (1986). Asset pricing in a production economy with incomplete information. Journal of Finance 41: 383391.Google Scholar
5. Dothan, M.-U. & Feldman, D. (1986). Equilibrium interest rates and multiperiod bonds in a partially observable economy. Journal of Finance 41: 369382.Google Scholar
6. Frey, R. & Runggaldier, W. (1999). Risk-minimizing hedging strategies under restricted information: the case of stochastic volatility models observable only at discrete random times. Mathematical Methods of Operations Research 50: 339350.Google Scholar
7. Gennotte, G. (1986). Optimal portfolio choice under incomplete information. Journal of Finance 41: 733746.Google Scholar
8. Hu, Y., Imkeller, P. & Muller, M. (2005). Utility maximization in incomplete markets. The Annals of Applied Probability 15: 16911712.Google Scholar
9. Jeanblanc, M. & Pontier, M. (1990). Optimal portfolio for a small investor in a market with discontinuous prices. Applied Mathematics and Optimization 22: 287310.Google Scholar
10. Jeanblanc, M. & Song, S., (2012). Martingale representation property in progressively enlarged filtrations. arXiv:1203.1447.Google Scholar
11. Jeulin, T. (1980). Semimartingales et grossissements d'une filtration. Lecture Notes in Mathematics 833. Berlin: Springer.Google Scholar
12. Jeulin, T. & Yor, M. (1985). Grossissement de filtration: exemples et applications. Lecture Notes in Mathematics 1118. Berlin: Springer.Google Scholar
13. Jiao, Y. & Pham, H. (2011). Optimal investment with counterparty risk: a default-density modeling approach. Finance and Stochastics 15: 725753.Google Scholar
14. Karatzas, I., Lehoczky, J.-P., & Shreve, S. (1987). Optimal portfolio and consumption decisions for a small investor on a finite horizon. SIAM Journal on Control and Optimization 25: 15571586.Google Scholar
15. Karatzas, I., Lehoczky, J.-P., Shreve, S., & Xu, G. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM Journal on Control and Optimization 29: 702730.Google Scholar
16. Karatzas, I. & Shreve, S., (1991). Brownian Motion and Stochastic Calculus. New York: Springer-Verlag.Google Scholar
17. Kharroubi, I. & Lim, T. (2015). A decomposition approach for the discrete-time approximation of FBSDEs with a jump. Random Operators and Stochastic Equations 23: 81109.Google Scholar
18. Kramkov, D. & Schachermayer, W. (1999). The asymptotic elasticity of utility functions and optimal investment in incomplete markets. The Annals of Applied Probability 9: 904950.Google Scholar
19. Lakner, P. (1995). Utility maximization with partial information. Stochastic Processes and their Applications 56: 247273.Google Scholar
20. Lakner, P. (1998). Optimal trading strategy for an investor: the case of partial information. Stochastic Processes and their Applications 76: 7797.Google Scholar
21. Lasry, J.-M. & Lions, P.-L. (1999). Stochastic control under partial information and applications to finance. Stochastic Processes and their Applications 56: 247273.Google Scholar
22. Lim, T. & Quenez, M.-C. (2011). Utility maximization in incomplete market with default. Electronic Journal of Probability 16: 14341464.Google Scholar
23. Merton, R.-C. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 3: 373413.Google Scholar
24. Neveu, J. (1975). Discrete-parameter martingales. English translation, Amsterdam: North-Holland; and New York: American Elsevier.Google Scholar
25. Pardoux, E. (1989). Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. Lecture Notes in Mathematics, Vol. 1464. Berlin: Springer-Verlag, 67–163.Google Scholar
26. Pham, H. & Quenez, M.-C. (2001). Optimal portfolio in partially observed stochastic volatility models. Annals of Applied Probability 11: 210238.Google Scholar
27. Protter, P. (1990). Stochastic Integration and Differential Equations. Berlin: Springer-Verlag.Google Scholar
28. Roland, S. (2007). Partially observed jump diffusions. Ph.D. Thesis, Evry University.Google Scholar