Published online by Cambridge University Press: 23 April 2010
We consider a two-player game in which the first player (the Guesser) tries to guess, edge-by-edge, the path that second player (the Chooser) takes through a directed graph. At each step, the Guesser makes a wager as to the correctness of her guess and receives a payoff proportional to her wager if she is correct. We derive optimal strategies for both players for various classes of graphs, and we describe the Markov-chain dynamics of the game under optimal play. These results are applied to the infinite-duration Lying Oracle Game, in which the Guesser must use information provided by an unreliable Oracle to predict the outcome of a coin toss.