Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T22:01:11.223Z Has data issue: false hasContentIssue false

Optimal management and valuation of a natural resource: the case of optimal harvesting

Published online by Cambridge University Press:  11 March 2022

M'hamed Gaïgi
Affiliation:
ENIT-LAMSIN, Université de Tunis El Manar, Tunis, Tunisia. E-mail: [email protected]
Idris Kharroubi
Affiliation:
LPSM, CNRS, UMR 8001, Sorbonne Université, Paris, France. E-mail: [email protected]
Thomas Lim
Affiliation:
LaMME, CNRS UMR 8071, ENSIIE, Évry, France. E-mail: [email protected]

Abstract

In this paper, we consider the problem of sustainable harvesting. We explain how the manager maximizes his/her profit according to the quantity of natural resource available in a harvesting area and under the constraint of penalties and fines when the quota is exceeded. We characterize the optimal values and some optimal strategies using a verification result. We then show by numerical examples that this optimal strategy is better than naive ones. Moreover, we define a level of fines which insures the double objective of the sustainable harvesting: a remaining quantity of available natural resource to insure its sustainability and an acceptable income for the manager.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruder, B. & Pham, H. (2009). Impulse control on finite horizon with execution delay. Stochastic Processes and their Applications 119: 14361469.CrossRefGoogle Scholar
Budhiraja, A. & Ross, K. (2007). Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM Journal on Control and Optimization 45(6): 21692206.CrossRefGoogle Scholar
Clark, C.-W. & Reed, W.-J. (1989). The tree-cutting problem in a stochastic environment: The case of age-dependent growth. Journal of Economics & Management 2: 92106.Google Scholar
Conrad, C.-W. & Clark, C.-W. (1987). Natural resource economics: notes and problems. New York: Cambridge University Press.CrossRefGoogle Scholar
Danielsson, A. (2002). Efficiency of catch and effort quotas in the presence of risk. Journal of Environmental Economics and Management 43: 2033.CrossRefGoogle Scholar
Hindy, A., Huang, C., & Zhu, H. (1993). Numerical analysis of a free-boundary singular control problem in financial economics. Journal of Economic Dynamics and Control 21: 297327.CrossRefGoogle Scholar
Jin, Z., Yin, G., & Zhu, C. (2012). Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation. Automatica 48(8): 14891501.CrossRefGoogle Scholar
Kharroubi, I., Lim, T., & Ly Vath, V. (2019). Optimal exploitation of a resource with stochastic population dynamics and delayed renewal. Journal of Mathematical Analysis and Applications 477: 627656.CrossRefGoogle Scholar
Kushner, H. & Dupuis, P. (2001). Numerical methods for stochstic control problems in continuous time, 2nd ed. Stochastic Modelling and Applied Probability, Vol. 24. New York: Springer.CrossRefGoogle Scholar
Kvamsdal, S.-F., Poudel, D., & Sandal, L.-K. (2016). Harvesting in a fisheries with stochastic growth and a mean-reverting price. Environmental and Resource Economics, Springer; European Association of Environmental and Resource Economists 63(3): 643663.Google Scholar
Murillas, A. & Chamorro, J.-M. (2006). Valuation and management of fishing resources under price uncertainty. Environmental & Resource Economics 33: 3971.CrossRefGoogle Scholar
Nostbakken, L. (2006). Regime switching in a fisheries with stochastic stock and price. Journal of Environmental Economics and Management 51(2): 231241.CrossRefGoogle Scholar
Nostbakken, L., Thébaud, O., & Sorensen, L.-C. (2011). Investment behaviour and capacity adjustment in fisheries: A survey of the literature. Marine Resource Economics 26: 95117.CrossRefGoogle Scholar
Pella, J.-J. & Tomlinson, P.-K. (1969). A generalized stock production model. Bulletin Inter-American Tropical Tuna Commission 13: 421496.Google Scholar
Reed, W.-J. & Clark, H.-R. (1990). Harvest decisions and asset valuation for biological resources exhibiting size-dependent stochastic growth. International Economic Review 31: 147169.CrossRefGoogle Scholar
Reed, W.-J. & Heras, E. (1992). The conservation and exploitation of vulnerable resources. Bulletin of Mathematical Biology 54: 185207.CrossRefGoogle Scholar
Sarkar, S. (2009). Optimal fisheries harvesting rules under uncertainty. Resource and Energy Economics 31: 272286.CrossRefGoogle Scholar
Schaefer, M.B. (1954). Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bulletin Inter-American Tropical Tuna Commission 1: 2356.Google Scholar
Skiadas, C.H. (2010). Exact solutions of stochastic differential equations: Gompertz, generalized logistic and revised exponential. Methodology and Computing in Applied Probability 12: 261270.CrossRefGoogle Scholar
Weitzman, M.-L. (2002). Landing fees vs harvest quotas with uncertain fish stocks. Journal of Environmental Economics and Management 43: 325338.CrossRefGoogle Scholar