Published online by Cambridge University Press: 27 July 2009
The state of a system is modelled by Brownian motion with negative drift and an absorbing barrier at the origin. A repairman arrives according to a Poisson process of rate λ. If the state of the system at arrival of the repairman does not exceed a certain threshold, he/she increases it by a random amount, otherwise no action is taken. Costs are assigned to each visit of the repairman, to each repair, and to the system being in state 0. It is shown that there exists a unique arrival rate λ which minimizes the average cost per unit time over an infinite horizon.