No CrossRef data available.
Published online by Cambridge University Press: 24 September 2003
We analyze a feedback system consisting of a finite buffer fluid queue and a responsive source. The source alternates between silence periods and active periods. At random epochs of times, the source becomes ready to send a burst of fluid. The length of the bursts (length of the active periods) are independent and identically distributed with some general distribution. The queue employs a threshold discarding policy in the sense that only those bursts at whose commencement epoch (the instant at which the source is ready to send) the workload (i.e., the amount of fluid in the buffer) is less than some preset threshold are accepted. If the burst is rejected then the source backs off from sending. We work within the framework of Poisson counter-driven stochastic differential equations and obtain the moment generating function and hence the probability density function of the stationary workload process. We then comment on the stability of this fluid queue. Our explicit characterizations will further provide useful insights and “engineering” guidelines for better network designing.