Published online by Cambridge University Press: 27 July 2009
We present results on the finite-time behavior of the discrete-time, finite-space version of the simulated annealing algorithm. The asymptotic and finite-time behavior of the annealing algorithm under slow cooling will be shown to depend on the largest eigenvalue of a certain matrix. To illustrate the utility of our results, we study the slowly cooled annealing algorithm applied to the maximum matching problem and demonstrate a polynomial randomized approximation property of the algorithm.