Published online by Cambridge University Press: 20 May 2016
We focus on Erol Gelenbe's scientific and technical contributions to probability models in the computer and information sciences, but limit our survey to the last fifteen years. We start with a brief overview of his work as a single author, as well as his work in collaboration with over 200 co-authors. We discuss some of his recent and innovative work regarding a new probability model that represents Intermittent Energy Sources for Computing and Communications, introducing Energy Packet Networks which are a probabilistic representation of the flow, storage and consumption of electrical energy at the microscopic level (in electronic chips), and at the macroscopic level (e.g. in buildings or data centers) and for its routing and dynamic usage by consuming units (such as computer elements, chips or machines). We next discuss his work on designing computer and communication systems that parsimoniously use energy in order to achieve a satisfactory level of quality of service (QoS). Trade-offs between system QoS and energy consumption are also considered. Then we turn to Prof. Gelenbe's pioneering work on Autonomic Communications and the design and implementation of CPN, the Cognitive Packet Network, and we also briefly review his spiking random neural network that was used in CPN. This is followed by a brief review of work that he conducted since 1999 on human evacuation from dangerous or catastrophic environments, and the design of technology driven Emergency Management Systems. His research since the late 2000s on Gene Regulatory Networks is then covered together with its application to the detecting possible disease from microarray data. Finally, we briefly discuss some novel analytical models that he developed in this period with publications appearing in journals of physics and applied mathematics.