No CrossRef data available.
Published online by Cambridge University Press: 08 April 2020
Dielectric breakdown in a thin oxide is presented in terms of an interacting particle system on a two-dimensional lattice. All edges in the system are initially assumed to be closed. An edge between two adjacent vertices will open according to an exponentially distributed random variable. Breakdown occurs at the time an open path connects the top layer of the lattice to the bottom layer. Using the extreme value theory, we show that the time until breakdown is asymptotically Weibull distributed.