Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T16:02:26.117Z Has data issue: false hasContentIssue false

PRESERVATION OF RELIABILITY CLASSES UNDER MIXTURES OF RENEWAL PROCESSES

Published online by Cambridge University Press:  18 December 2007

F. G. Badía
Affiliation:
Departamento de Métodos EstadísticosUniversidad de ZaragozaZaragoza, Spain E-mail:[email protected]
C. Sangüesa
Affiliation:
Departamento de Métodos EstadísticosUniversidad de ZaragozaZaragoza, Spain E-mail:[email protected]

Abstract

In this work we provide sufficient conditions for the arrival times of a renewal process so that the number of its events occurring before a randomly distributed time, T, independent of the process preserves the aging properties of T.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barlow, R.E. & Proschan, F. (1965). Mathematical theory of reliability. New York: Wiley.Google Scholar
2.Barlow, R.E. & Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt, Reinhart and Winston.Google Scholar
3.Block, H.W. & Savits, T.H. (1980). Laplace transforms for classes of life distributions. The Annals of Probability 8: 465474.CrossRefGoogle Scholar
4.Block, H.W., Savits, T.H., & Singh, H. (1998). The reversed hazard rate function. Probability in the Engineering and Informational Sciences 12: 6990.CrossRefGoogle Scholar
5.Chandra, N.K. & Roy, D. (2001). Some results on reversed hazard rate. Probability in the Engineering and Informational Sciences 15: 95102.CrossRefGoogle Scholar
6.Grandell, J. (1997). Mixed Poisson processes. London: Chapman & Hall.CrossRefGoogle Scholar
7.Esary, J.D., Marshall, W., & Proschan, F. (1973). Shock models and wear processes. The Annals of Probability 4: 627649.Google Scholar
8.Finkelstein, M.S. (2002). On the reversed hazard rate. Reliability Engineering and System Safety 78: 7175.CrossRefGoogle Scholar
9.Lai, C.D. & Xie, M. (2006). Stochastic Ageing and Dependendence for Reliability. New York: Springer.Google Scholar
10.Müller, A. & Stoyan, D. (2002). Comparison methods for stochastic models and risks. Chichester: Wiley.Google Scholar
11.Nanda, A.K. & Sengupta, D. (2005). Discrete life distributions with decreasing reversed hazard. Sankhyā 67: 106125.Google Scholar
12.Ross, S.M., Shanthikumar, J.G., & Zhu, Z. (2005). On increasing-failure-rate random variables. Journal of Applied Probability 42: 797809.CrossRefGoogle Scholar
13.Sengupta, D. & Nanda, A.K. (1999). Log-concave and concave distributions in reliability. Naval Research Logistics 46: 419433.3.0.CO;2-B>CrossRefGoogle Scholar
14.Shaked, M. & Shanthikumar, J.G. (1994). Stochastic orders and their applications. London: Academic Press.Google Scholar
15.Shanthikumar, J.G. & Yao, D.D. (1991). Bivariate characterization of some stochastic order relations. Advances in Applied Probability 23: 642659.CrossRefGoogle Scholar
16.Sunoj, S.M. & Maya, S.S. (2006) Some properties of weighted distributions in the contex of repairable systems. Communications in Statistics: Theory and Methods 35: 223228.CrossRefGoogle Scholar
17.Vinogradov, O.P. (1973). The definition of distribution functions with increasing hazard rates in terms of the Laplace transform. Teorija Verojatnosteıˇi ee Primenenija 18: 811814 (in Russian).Google Scholar