Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T01:41:52.290Z Has data issue: false hasContentIssue false

XRD and EXAFS studies of azomethynic copper metallochelates as models of blue copper proteins

Published online by Cambridge University Press:  06 March 2012

V. G. Vlasenko*
Affiliation:
Institute of Physics, Rostov State University, 344090 Stachki Ave. 194, Rostov-on-Don, Russia
A. T. Shuvaev
Affiliation:
Institute of Physics, Rostov State University, 344090 Stachki Ave. 194, Rostov-on-Don, Russia
A. L. Nivorozkin
Affiliation:
Institute of Physical and Organic Chemistry, Rostov State University, 344090, Stachki Ave. 194/2, Rostov-on-Don, Russia
A. I. Uraev
Affiliation:
Institute of Physical and Organic Chemistry, Rostov State University, 344090, Stachki Ave. 194/2, Rostov-on-Don, Russia
*
a)Author to whom correspondence should be addressed; Electronic mail: [email protected]

Abstract

The structure of two biomimetic copper complexes bis[4-benzylaldimino-3-methyl-1-phenyl-5-thio (seleno)pyrazolato]copper(II)—36 32N6X2Cu (where X=S, Se) have been studied and X-ray patterns of these compounds have been prepared using the Rietveld refinement technique. Both complexes crystallized in a monoclinic lattice, space group-C2/c(15). The unit-cell parameters are a=28.917(3) Å; b=7.000(2) Å; c=17.550(4) Å; β=106.869(1) (1) for C36H32CuN6S2 and a=29.126(6) Å; b=7.042(4) Å; c=17.228(2) Å; β=105.587(2) for C36H32CuN6Se2. Analysis of the copper and selenium K-edge X-ray absorption spectra (EXAFS) of these complexes show that a copper atom is in pseudo-tetrahedric ligand environment N2X2 with typical Cu–N bonds (R=2.00–2.01 Å) and significantly different Cu–S and Cu–Se bonds (R=2.27 Å and R=2.41 Å, respectively) because of different sulfur and selenium ion radii. © 2004 International Centre for Diffraction Data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adman, E. T. (1985). Topics in Molecular and Structural Biology Metalloproteins, edited by Harrison, P. (MacMillan, New York), pp. 1–42.Google Scholar
Berry, S. M., Gieselman, M. D., Nilges, M. J., van der Donk, W., and Lu, Yi. (2002). “An Engineered Azurin variant Containing a Selenocystein Copper Ligand,” J. Am. Chem. Soc. JACSAT 124, 20842085. acs, JACSAT CrossRefGoogle ScholarPubMed
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Gray, H. B., and Solomon, E. I. (1981). Copper proteins, edited by Spiro, T. G. (Wiley, New York), pp. 1–39.Google Scholar
Guss, J. M., Bartunik, H. D., and Freeman, H. C. (1992). “Accuracy and precision in protein crystal structure analysis: Restrained least-squares refinement of the crystal structure of poplar plastocyanin at 1.33 Angstroms,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 48, 790811. acl, ASBSDK CrossRefGoogle Scholar
Holland, P. L., and Tolman, W. B. (1999). “Three-coordinate Cu(II) complexes: Structural models of trigonal-planar Type 1 copper protein active sites,” J. Am. Chem. Soc. JACSAT 121, 72707271. acs, JACSAT Google Scholar
Holland, P. L., and Tolman, W. B. (2000). “A structural model of the type 1 copper protein active site: N2S(thiolate)S(thioether) ligation in a Cu(II) complex,” J. Am. Chem. Soc. JACSAT 122, 63316332. acs, JACSAT CrossRefGoogle Scholar
Kitajima, N., Fujisawa, K., and Moro-oka, Y. (1990). “Tetrahedral copper(II) complexes supported by a hindered pyrazolylborate. Formation of the thiolato complex, which closely mimics the spectroscopic characteristics of blue copper proteins,” J. Am. Chem. Soc. JACSAT 112, 32103212. acs, JACSAT CrossRefGoogle Scholar
Kitajima, N., Fujisawa, K., Tanaka, M., and Moro-oka, Y. (1992). “X-ray structure of thiolatocopper(II) complexes bearing close spectroscopic similarities to blue copper proteins,” J. Am. Chem. Soc. JACSAT 114, 92329233. acs, JACSAT CrossRefGoogle Scholar
Kitajima, N. and Tolman, W. B. (1995). “Coordination chemistry with sterically hindered hydrotris(pyrazolyl)borate ligands: Organometallic and bioinorganic perspectives,” Progress in Inorg. Chem. ZZZZZZ 43, 419531.Google Scholar
Kraus, W., and Nolze, G. (1999). “Powder Cell for Windows,” version 2.3, Federal Institute for Materials Research and Testing, Berlin, Germany.Google Scholar
LaCroix, L. B., Randall, D. W., Nersissian, A. M., Hoitinc, C. W. G., Canters, G. W., Valentine, J. S., and Solomon, E. I. (1998). “Spectroscopic and geometric variations in perturbed blue copper centers: Electronic structures of stellacyanin and cucumber basic protein,” J. Am. Chem. Soc. JACSAT 120, 96219631. acs, JACSAT Google Scholar
Qiu, D., T. Kilpatrick, L., Kitajima, N., and Spiro, T. G. (1994). “Modeling blue copper protein resonance Raman spectra with thiolate-CuII complexes of a sterically hindered tris(pyrazolyl)borate,” J. Am. Chem. Soc. JACSAT 116, 25852590. acs, JACSAT CrossRefGoogle Scholar
Shuvaev, A. T., Helmer, B. Ya., Lubeznova, T. A., and Shuvaeva, V. A. (1999). “Laboratory XAFS spectrometer,” J. Synchrotron Radiat. JSYRES 6, 158159. jsy, JSYRES Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR Google Scholar
Uraev, A. I., Nivorozkin, A. L., Bondarenko, G. I., Lysenko, K. A., Korshunov, O. Yu., Vasilshenko, I. S., Vlasenko, V. G., Shuvaev, A. T., Kurbatov, V. P., Antipin, M. Yu., and Garnovskii, A. D. (1999). “New copper chelates of heteroaromatic schiff bases with N,S(O,Se) ligand environment, which model active sites of blue copper proteins,” Dokl. Chem. DKCHAY 367, 168170. 9g6, DKCHAY Google Scholar
Uraev, A. I., Nivorozkin, A. L., Bondarenko, G. I., Lysenko, K. A., Korshunov, O. Yu., Vlasenko, V. G., Shuvaev, A. T., Kurbatov, V. P., Antipin, M. Yu., and Garnovskii, A. D. (2000). “Synthesis, structures, and spectral properties of biomimetic azomethine metal chelates with chromophores CuN2S2, CuN2O2, and CuN2Se2. Crustal structure of Bis[4-benzylaldimino-3-methyl-1-phenyl-5-thiopirazolato]copper(II),” Russ. Chem. Bull. RCBUEY 49, 18631868. 92k, RCBUEY CrossRefGoogle Scholar
Uraev, A. I., Vlasenko, V. G., Kharisov, B. I., Blanco, L. M., Shuvaev, A. T., Vasilshenko, I. S., Garnovskii, A. D., and Elizondo, N. V. (2000). “Synthesis and EXAFS investigation of azomethynic copper metallochelates with N, S, O ligand environment,” PolihedronZZZZZZ 19, 23612366.CrossRefGoogle Scholar
Zabinsky, S. I., Rehr, J. J., Ancudinov, A., Albes, R. C., and Eller, M. J. (1995). “Multiple-scattering calculations of X-ray absorption spectra,” Phys. Rev. PLRAAN 52, 29952999. pra, PLRAAN CrossRefGoogle ScholarPubMed