Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T06:26:22.747Z Has data issue: false hasContentIssue false

XRD analysis of nanocrystalline anatase powders prepared by various chemical routes: correlations between micro-structure and crystal structure parameters

Published online by Cambridge University Press:  14 November 2013

Z. Matěj*
Affiliation:
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
L. Matějová
Affiliation:
Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojová 135, 165 02 Praha 6, Czech Republic
R. Kužel
Affiliation:
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
*
* Corresponding author. E-mail: [email protected]

Abstract

Nanocrystalline anatase powders synthesised by various chemical processes as super/subcritical fluid extraction, sol-gel technique and hydrolysis of titanium alkoxides in hydrogen peroxide were studied by X-ray diffraction (XRD) whole profile modelling method (WPPM) in order to reveal correlations between structural and micro-structural parameters as well as sample treatment conditions. Anisotropy of the diffraction line broadening due to truncated bipyramidal shape of anatase crystals was discussed. The hkl-anisotropy can be very strong but also almost negligible in dependence on relative ratio of the crystallite dimensions. The latter was the case for the studied samples. The size of synthesised anatase nanoparticles was within the range 3–25 nm. The theoretical total surface area of crystallites calculated from XRD was in a good correlation with the surface area measured by the nitrogen physisorption up to the temperature 400–450 °C, when the particles started to agglomerate. At atomic scale a unit cell volume contraction with decreasing crystallite size and a significant deficiency in the Ti-site occupancy was observed. Both effects were attributed to the presence of Ti-vacancies and a linear coefficient between the relative cell volume contraction and the fraction of Ti-vacancies was estimated to (–0.017 ± 0.003).

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. I. and Bhattacharya, S. S. (2009). “Size effect on the lattice parameters of nanocrystalline anatase,” Appl. Phys. Lett. 95, 191906.CrossRefGoogle Scholar
Arlt, T., Bermejo, M., Blanco, M. A., Gerward, L., Jianq, J., Olsen, J. S. and Recio, J. M. (2000). “High-pressure polymorphs of anatase TiO2 ,” Phys. Rev. B: Solid State 61, 1441414419.Google Scholar
Audebrand, N., Auffrédic, J.-P. and Louër, D. (2000). “An X-ray powder diffraction study of the microstructure and growth kinetics of nanoscale crystallites obtained from hydrated cerium oxides,” Chem. Mater. 12, 17911799.CrossRefGoogle Scholar
Barnard, A. S. and Zapol, P. (2004). “Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals,” Phys. Rev. B: Solid State 108, 1843518440.Google Scholar
Barnard, A. S. and Curtiss, L. A. (2005). “Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry,” Nano Lett. 5, 12611266.CrossRefGoogle ScholarPubMed
Beyerlein, K. R., Snyder, R. L. and Scardi, P. (2011). “Powder diffraction line profiles from the size and shape of nanocrystallites,” J. Appl. Crystallogr. 44, 945953.Google Scholar
Bokhimi, X., Morales, A., Novaro, O., Lopez, T., Sanchez, E. and Gomez, R. (1995). “Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel-TiO2 crystalline phases,” J. Mater. Res. 10, 27882796.Google Scholar
Bontempi, E., Zanola, P., Gelfi, M., Zucca, M., Depero, L. E., Girault, B., Goudeau, P., Geandier, G., Bourhis, E. L. and Renault, P.-O. (2010). “Elastic behaviour of titanium dioxide films on polyimide substrates studied by in situ tensile testing in a X-ray diffractometer,” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 365369.Google Scholar
Borgese, L., Bontempi, E., Gelfi, M., Depero, L. E., Goudeau, P., Geandier, G. and Thiaudière, D. (2011). “Microstructure and elastic properties of atomic layer deposited TiO2 anatase thin films,” Acta Mater. 59, 28912900.Google Scholar
Brunauer, S., Emmett, P. H. and Teller, E. (1938). “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60, 309319.CrossRefGoogle Scholar
Cernuto, G., Masciocchi, N., Cervellino, A., Colonna, G. M. and Guagliardi, A. (2011). “Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: A total scattering Debye function study,” J. Am. Chem. Soc. 133, 31143119.Google Scholar
Djerdj, I. and Tonejc, A. (2006). “Structural investigations of nanocrystalline TiO2 samples,” J. Alloys Compd. 413, 159174.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fujishima, A. and Zhang, X. (2006). “Titanium dioxide photocatalysis: present situation and future approaches,” C. R. Chim. 9, 750760.Google Scholar
Grey, I. and Wilson, N. C. (2007). “Titanium vacancy defects in sol–gel prepared anatase,” J. Solid State. Chem. 180, 670678.Google Scholar
Hanaor, D. A. H. and Sorrell, C. C. (2011). “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855874.CrossRefGoogle Scholar
Hashimoto, K., Irie, H. and Fujishima, A. (2005). “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys. 44, 82698285.Google Scholar
Howard, C. J., Sabine, T. M. and Dickson, F. (1991). “Structural and thermal parameters for rutile and anatase,” Acta Crystallogr., Sect. B: Struct. Sci. 47, 462468.Google Scholar
Chen, B., Zhang, H., Dunphy-Guzman, K. A., Spagnoli, D., Kruger, M. B., Muthu, D., Kunz, M., Fakra, S. and Hu, J. (2009). “Size-dependent elasticity of nanocrystalline titania,” Phys. Rev. B: Solid State 79, 125406.Google Scholar
Iacomino, A., Cantele, G., Ninno, D., Marri, I. and Ossicini, S. (2008). “Structural, electronic and surface properties of anatase TiO2 nanocrystals from first principles,” Phys. Rev. B: Solid State 78, 075405.Google Scholar
Jensen, G. V., Bremholm, M., Lock, N., Deen, G. R., Jensen, T. R., Iversen, B. B., Niederberger, M., Pedersen, J. S. and Birkedal, H. (2010). “Anisotropic crystal growth kinetics of anatase TiO2 nanoparticles synthesized in a nonaqueous medium,” Chem. Mater. 22, 60446055.CrossRefGoogle Scholar
Kužel, R., Nichtová, L., Matěj, Z. and Musil, J. (2010). “In-situ X-ray diffraction studies of time and thickness dependence of crystallization of amorphous TiO2 thin films and stress evolution,” Thin Solid Films 519, 16491654.CrossRefGoogle Scholar
Langford, J. I. and Wilson, A. J. C. (1978). “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr. 11, 102113.CrossRefGoogle Scholar
Langford, J. I., Louër, D. and Scardi, P. (2000). “Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr. 33, 964974.Google Scholar
Leonardi, A., Leoni, M., Siboni, S. and Scardi, P. (2012). “Common volume functions and diffraction line profiles of polyhedral domains,” J. Appl. Crystallogr. 45, 11621172.Google Scholar
Leoni, M., Martinez-Garcia, J. and Scardi, P. (2007). “Dislocation effects in powder diffraction,” J. Appl. Crystallogr. 40, 719724.Google Scholar
Li, G., Li, L., Boerio-Goates, J. and Woodfield, B. F. (2005). “High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics and surface hydration chemistry,” J. Am. Chem. Soc. 127, 86598666.Google Scholar
Li, Y.-F. and Liu, Z.-P. (2011). “Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings,” J. Am. Chem. Soc. 133, 1574315752.Google Scholar
Limpert, E., Stahel, W. A. and Abbt, M. (2001). “Log-normal distributions across the sciences: Keys and clues,” BioScience 51, 341352.Google Scholar
Luca, V. (2009). “Comparison of size-dependent structural and electronic properties of anatase and rutile nanoparticles,” J. Phys. Chem. C 113, 63676380.Google Scholar
Matějová, L., Cajthaml, T., Matěj, Z., Benada, O., Klusoň, P. and Šolcová, O. (2010). “Super/subcritical fluid extractions for preparation of the crystalline titania,” J. Supercrit. Fluids 52, 215221.Google Scholar
Matějová, L., Matěj, Z. and Šolcová, O. (2012). “A facile synthesis of well-defined titania nanocrystallites: Study on their growth, morphology and surface properties,” Microporous Mesoporous Mater. 154, 187195.Google Scholar
Matějová, L., Matěj, Z., Fajgar, R., Cajthaml, T. and Šolcová, O. (2012). “TiO2 powders synthesized by pressurized fluid extraction and supercritical drying: Effect of water and methanol on structural properties and purity,” Mater. Res. Bull. 47, 35733579.Google Scholar
Matěj, Z. and Kužel, R. (2009). MStruct - program/library for MicroStructure analysis by powder diffraction. <http://www.xray.cz/mstruct/> (July 7, 2013).+(July+7,+2013).>Google Scholar
Matěj, Z., Kužel, R. and Nichtová, L. (2010). “XRD total pattern fitting applied to study of microstructure of TiO2 films,” Powder. Diffr. 25, 125131.Google Scholar
Matěj, Z., Matějová, L., Novotný, F., Drahokoupil, J. and Kužel, R. (2011). “Determination of crystallite size distribution histogram in nanocrystalline anatase powders by XRD,” Z. Kristallogr. Proc. 1, 8792.Google Scholar
Matěj, Z., Kužel, R. and Nichtová, L. (2011). “X-Ray diffraction analysis of residual stress in thin polycrystalline anatase films and elastic anisotropy of anatase,” Metall. Mater. Trans. A 42, 33233332.Google Scholar
Matěj, Z. (2011). “Structure of submicrocrystalline materials studied by X-ray diffraction,” PhD thesis, Charles University in Prague, Faculty of Mathematics and Physics; sec. 4.4.4.Google Scholar
Mills, A., Hill, G., Bhopal, S., Parkin, I. P. and O'Neill, S. A. (2003). “Thick titanium dioxide films for semiconductor photocatalysis,” J. Photochem. Photobiol., A 160, 185194.Google Scholar
Popa, N. C. (1998). “The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement,” J. Appl. Crystallogr. 31, 176180.CrossRefGoogle Scholar
Proffen, T. and Neder, R. B. (1997). “DISCUS: a program for diffuse scattering and defect-structure simulation,” J. Appl. Crystallogr. 30, 171175.Google Scholar
Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K. (2003). “Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle,” Phys. Rev. B: Solid State 107, 10281035.Google Scholar
Scardi, P. and Leoni, M. (2001). “Diffraction line profiles from polydisperse crystalline systems,” Acta Crystallogr., Sect. A: Found. Crystallogr. 57, 604613.CrossRefGoogle ScholarPubMed
Scardi, P. and Leoni, M. (2002). “Whole powder pattern modelling,” Acta Crystallogr., Sect. A: Found. Crystallogr. 58, 190200.Google Scholar
Spadavecchia, F., Cappelletti, G., Ardizzone, S., Bianchi, C. L., Cappelli, S., Oliva, C., Scardi, P., Leoni, M. and Fermo, P. (2010). “Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species,” Appl. Catal. B 96, 314322.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Swamy, V., Menzies, D., Muddle, B. C., Kuznetsov, A. and Dubrovinsky, L. S. (2006). “Nonlinear size dependence of anatase TiO2 lattice parametes,” Appl. Phys. Lett. 88, 243103.Google Scholar
Štengl, V., Velická, J., Maříková, M. and Grygar, T. M. (2011). “New generation photocatalysts: How tungsten influences the nanostructure and photocatalytic activity of TiO2 in the UV and visible regions,” ACS Appl. Mater. Interfaces 3, 40144023.CrossRefGoogle ScholarPubMed
Vives, S. and Meunier, C. (2009). “Influence of the X-ray diffraction line profile analysis method on the structural and microstructural parameters determination of sol-gel TiO2 powders,” Powder Diffr. 24, 205220.Google Scholar
Wang, Y.-Q., Chen, S.-G., Tang, X.-H., Palchik, O., Zaban, A., Koltypin, Y. and Gedanken, A. (2001). “Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells,” J. Mater. Chem. 11, 521526.Google Scholar
Weibel, A., Bouchet, R., Boulc', F. and Knauth, P. (2005). “The big problem of small particles: A comparison of methods for determination of particle size in nanocrystalline anatase powders,” Chem. Mater. 17, 23782385.Google Scholar
Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., Cheng, H. M. and Lu, G. Q. (2008). “Anatase TiO2 single crystals with a large percentage of reactive facets,” Nature 453, 638641.Google Scholar
Zhang, H. and Banfield, J. F. (1998). “Thermodynamic analysis of phase stability of nanocrystalline titania,” J. Mater. Chem. 8, 20732076.Google Scholar
Zhang, H. and Banfield, J. F. (2002). “Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania,” Chem. Mater. 14, 41454154.Google Scholar
Zhang, H., Chen, B., Banfield, J. F. and Waychunas, G. A. (2008). “Atomic structure of nanometer-sized amorphous TiO2 ,” Phys. Rev. B: Solid State 78, 214106.Google Scholar