Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T14:16:08.988Z Has data issue: false hasContentIssue false

X-ray powder diffraction refinement of PbTi(1−x)FexO(3−δ) solid solution series

Published online by Cambridge University Press:  28 June 2013

Hasitha Ganegoda*
Affiliation:
Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois
James A. Kaduk
Affiliation:
Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois
Carlo U. Segre
Affiliation:
Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A series of iron-doped lead titanate PbTi(1−x)FexO(3−δ) samples in the x = 0–1 composition range was prepared using sol–gel synthesis at a calcination temperature of 700 °C. The room temperature CuKα powder diffraction data collected from x = 0, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, and 0.3 samples were analyzed using the Rietveld method. Magnetoplumbite (PbFe12O19) secondary phase formation was observed at compositions x = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. Fe-composition dependent decrease of tetragonal distortion has been observed. According to Vegard's law, the B-site iron solubility limit in the lead titanate host was found to be approximately 10 mol% (x = 0.1). Homogeneous distribution of dopants below the solubility limit was evidenced by the linear behavior of unit-cell parameters. The absence of a cubic phase and the persistence of distorted oxygen octahedra indicated the existence of ferroelectric properties even at the x = 0.3 composition. Beyond x = 0.3, the P4mm tetragonal model was determined to be invalid possibly because of oxygen defect driven structural changes, mainly tilting Fe-polyhedra.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abakumov, A. M., Hadermann, J., Bals, S., Nikolaev, I. V., Antipov, E. V., and Van Tendeloo, G. (2006). “Crystallographic shear structures as a route to anion-deficient perovskites,” Angew. Chem. 118, 68496852.CrossRefGoogle Scholar
Batuk, D., Hadermann, J., Abakumov, A., Vranken, T., Hardy, A., Van Bael, M., and Van Tende- loo, G. (2011). “Layered perovskite-like Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of crystallographic shear planes,” Inorg. chem. 50, 49784986.CrossRefGoogle ScholarPubMed
Denton, A. R. and Ashcroft, N. W. (1991). “Vegard's law,” Phys. Rev. A 43, 31613164.CrossRefGoogle ScholarPubMed
Diaz-Castanon, S., Sanchez, Ll J., Estevez-Rams, E., Leccabue, F., and Watts, B. (1998). “Magneto-structural properties of PbFe12 O19 hexaferrite powders prepared by decomposition of hydroxide-carbonate and metal-organic precipitates,” J. Magn. Magn. Mater. 185, 194198.CrossRefGoogle Scholar
Dimza, V. I. (1993). “EPR studies of Mn, Fe, Co, and Cu doped PLZT and PMN compositions,” Phys. Status Solidi a 140, 543551.CrossRefGoogle Scholar
Eerenstein, W., Mathur, N. D., and Scott, J. F. (2006). “Multiferroic and magnetoelectric materials,” Nature 442, 759765.CrossRefGoogle ScholarPubMed
Eichel, R. -A. (2007). “Defect structure of oxide ferroelectricsvalence state, site of incorporation, mechanisms of charge compensation and internal bias fields,” J. Electroceram. 19, 1123.CrossRefGoogle Scholar
Erdem, E., Kiraz, K., Somer, M., and Eichel, R. (2010). “Size effects in Fe3+-doped PbTiO3 nanocrystals – formation and orientation of (Fe′Ti–VO˙˙)˙ dipoles,” J. Eur. Ceram. Soc. 30, 289293.CrossRefGoogle Scholar
Handley, R. (2000). Modern Magnetic Materials: Principles and Applications (Wiley, New York).Google Scholar
Hill, N. A. (2000). “Why are there so few magnetic ferroelectrics?J. Phys. Chem. B 104, 66946709.CrossRefGoogle Scholar
Hur, N., Park, S., Sharma, P. A., Ahn, J. S., Guha, S., and Cheong, S. (2004). “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429, 392395.CrossRefGoogle Scholar
Jenkins, R. and Snyder, R. L. (1996). Introduction to X-ray Powder Diffractometry (John Wiley & Sons Inc., New York).CrossRefGoogle Scholar
Keeble, D. J., Loyo-Menoyo, M., Booq, Z. I. Y., Garipov, R. R., Eremkin, V. V., and Smotrakov, V. (2009). “Fe3+ defect dipole centers in ferroelectric PbTiO3 studied using electron paramagnetic resonance,” Phys. Rev. B 80, 17.CrossRefGoogle Scholar
Kim, J., Kim, N., and Park, B. (2000). “Effects of ultrasound on perovskite phase developments, microstructures, and dielectric properties of sol-gel-processed PbTiO3 thin films,” Inorg. Mater. 5, 49954999.Google Scholar
Kim, K. (2005). “The effect of Cr doping on the microstructural and dielectric properties of (Ba0.6Sr0.4)TiO3 thin films,” Thin Solid Films 472, 2630.CrossRefGoogle Scholar
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y. (2003). “Magnetic control of ferroelectric polarization,” Nature 426, 5558.CrossRefGoogle ScholarPubMed
Kleebe, H., Lauterbach, S., Silvestroni, L., Kungl, H., Hoffmann, M. J., Erdem, E., and Eichel, R. A. (2009). “Formation of magnetic grains in ferroelectric Pb[Zr0.6Ti0.4]O3 ceramics doped with Fe3+ above the solubility limit,” Appl. Phys. Lett. 94, 142901.CrossRefGoogle Scholar
Koduri, R. and Lopez, M. (2007). “Influence of Mn on dielectric and piezoelectric properties of A-site and B-site modified PLZT nano-ceramics for sensor and actuator applications,” J. Mater. Sci.: Mater. Electron. 19, 669675.Google Scholar
Kroger, F. A. and Vink, H. J. (1956). Solid State Physics, Vol. 3(Academic Press, New York).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS), Technical Report (Report LAUR 86-748). Los Alamos National Laboratory.Google Scholar
Levin, I., Slutsker, J., Li, J., Tan, Z., and Roytburd, A. L. (2007). “Accommodation of transformation strains in transverse multiferroic nanostructures CoFe2O4–PbTiO3 ,” Appl. Phys. Lett. 91, 062912.CrossRefGoogle Scholar
Lines, M. (2001). Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press/Oxford University Press, Oxford/New York).CrossRefGoogle Scholar
Liu, Z., Ren, Z., Wei, X., Xiao, Z., Hou, X., Shen, G., Xu, G., and Han, G. (2010). “Improved room-temperature ferromagnetism in self-assembled disk-like superstructures of Fe-doped PbTiO3 nanocrystals,” J. Am. Ceram. Soc. 4, 14.Google Scholar
Ma, B., Narayanan, M., Tong, S., and Balachandran, U. (2009). “Fabrication and characterization of ferroelectric PLZT film capacitors on metallic substrates,” J. Mater. Sci. 45, 151157.CrossRefGoogle Scholar
Martin, L. W., Crane, S. P., Chu, Y., Holcomb, M. B., Gajek, M., Huijben, M., Yang, C., Balke, N., and Ramesh, R. (2008). “Multiferroics and magnetoelectrics: thin films and nanostructures,” J. Phys.: Condens. Matter 20, 434220.Google Scholar
Meštrić, H., Eichel, R., Kloss, T., Dinse, K., Laubach, S., Laubach, S., Schmidt, P., Schonau, K., Knapp, M., and Ehrenberg, H. (2005). “Iron-oxygen vacancy defect centers in PbTiO3: Newman superposition model analysis and density functional calculations,” Phys. Rev. B 71, 110.CrossRefGoogle Scholar
Mitchell, R. H. (2002). Perovskites Modern and Ancient (Almaz Press, Thunder Bay, Canada).Google Scholar
Mulla, I., Natarajan, N., Gaikwad, A., Samuel, V., Guptha, U., and Ravi, V. (2007). “A coprecipitation technique to prepare CoTa2O6 and CoNb2O6 ,” Mater. Lett. 61, 21272129.CrossRefGoogle Scholar
Nelmes, R. and Kuhs, W. (1985). “The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K,” Solid State Commun. 54, 721723.CrossRefGoogle Scholar
Palkar, V. and Malik, S. (2005). “Observation of magnetoelectric behavior at room temperature in Pb(Fe x Ti1x )O3 ,” Solid State Commun. 134, 783786.CrossRefGoogle Scholar
Palkar, V. R., Purandare, S. C., Gohil, S., John, J., and Bhattacharya, S. (2007). “Scanning probe imaging of coexistent ferromagnetism and ferroelectricity at room temperature,” Appl. Phys. Lett. 90, 172901.CrossRefGoogle Scholar
Patterson, A. L. (1939). “The scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978982.CrossRefGoogle Scholar
Puthucheri, S., Pandey, P. K., Gajbhiye, N. S., Gupta, A., Singh, A., Chatterjee, R., and Date, S. K. (2011). “Microstructural, electrical, and magnetic properties of acceptor-doped nanostructured lead zirconate titanate,” J. Am. Ceram. Soc. 94, 39413947.CrossRefGoogle Scholar
Ren, Z., Xu, G., Wei, X., Liu, Y., Hou, X., Du, P., Weng, W., Shen, G., and Han, G. (2007). “Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals,” Appl. Phys. Lett. 91, 063106.CrossRefGoogle Scholar
Ren, Z., Xu, G., Wei, X., Liu, Z., Wang, Y., Xiao, Z., Shen, G., and Han, G. (2009). “Ring- and single-crystal-like superstructures of Fe-doped PbTiO3 nanocrystals,” J. Cryst. Growth 311, 45934597.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A 32, 751767.CrossRefGoogle Scholar
Spaldin, N. A. and Fiebig, M. (2005). “Materials science. The renaissance of magnetoelectric multiferroics,” Science 309, 391392.CrossRefGoogle ScholarPubMed
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.CrossRefGoogle Scholar
Stoupin, S., Chattopadhyay, S., Bolin, T., and Segre, C. (2007). “High concentration manganese doping of ferroelectric PbTiO3 ,” Solid State Commun. 144, 4649.CrossRefGoogle Scholar
Toby, B. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Tokura, Y. (2006). “Multiferroics as quantum electromagnets,” Science 312, 14811482.CrossRefGoogle ScholarPubMed
Verma, K. C., Kotnala, R., and Negi, N. (2009). “Intrinsic study for magnetoelectric coupling in nanoparticles,” Solid State Commun. 149, 17431748.CrossRefGoogle Scholar
Supplementary material: File

Ganegoda Supplementary Material

Appendix

Download Ganegoda Supplementary Material(File)
File 4 MB