Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T22:51:09.423Z Has data issue: true hasContentIssue false

X-ray powder diffraction data for three new 3-ethylanilinium molybdates

Published online by Cambridge University Press:  29 April 2020

Alicja Rafalska-Łasocha*
Affiliation:
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow30-387, Poland
Michał Duda
Affiliation:
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow30-387, Poland
Wiesław Łasocha
Affiliation:
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow30-387, Poland Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek 8, Krakow30-239, Poland
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

X-ray powder diffraction data for new metal-organic compounds: tetrakis(3-ethylanilinium) octamolybdate Mo8O26(C8H12N)4 [a = 10.682(4), b = 16.589(5), c = 7.307(2) Å, α = 92.79(2)°, β = 97.99(3)°, γ = 103.89(3)°, V = 1240.27 Å3, Z = 1, space group P−1]; tetrakis(3-ethylanilinium) octamolybdate tetrahydrate Mo8O26(C8H12N)4·(H2O)4 [a = 18.801(7), b = 17.943(6), c = 7.334(3) Å, β = 98.50(5)°, V = 2446.99 Å3, Z = 2, space group P21/m] and bis(3-ethylanilinium) pentamolybdate Mo5O16(C8H12N)2 [a = 34.643(6), b = 5.5796(7), c = 14.200(3) Å, β = 96.20(2)°, V = 2728.69 Å3, Z = 4, space group I2/a] are reported in this paper. The investigated compounds were synthesized from molybdic acid and 3-ethylaniline in acidic solution. In the first two cases, we obtained octamolybdates, while the last compound crystallized as pentamolybdate.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., Evans, H. T., and Handwerker, D. S. (1966). Program X-ray, Geological Survey (US Department of the Interior, Washington, DC, USA).Google Scholar
Bożek, B., Neves, P., Valente, A. A., and Łasocha, W. (2018). “Ionic ammonium and anilinium based polymolybdate hybrid catalysts for olefin epoxidation,” Appl. Catal. A: Gen. 564, 1325.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Gates-Rector, S. and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34(4), 352360.CrossRefGoogle Scholar
Lasocha, W. and Lewinski, K. (1994). “PROSZKI – a system of programs for powder diffraction data analysis,” J. Appl. Cryst. 27, 437438.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “Fn: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder data from photographs,” J. Appl. Cryst. 8, 17.CrossRefGoogle Scholar
Szymańska, A., Nitek, W., Oszajca, M., Pamin, K., Połtowicz, J., and Łasocha, W. (2016). “Molybdenum complexes as catalysts for the oxidation of cycloalkanes with molecular oxygen,” Catal. Lett. 146, 9981010.CrossRefGoogle Scholar