Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T03:22:10.112Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for ErH2−xDx

Published online by Cambridge University Press:  29 February 2012

Mark A. Rodriguez*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Robert M. Ferrizz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Clark S. Snow
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
James F. Browning
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

X-ray powder diffraction data for ErH2−xDx formed by hydrogen (i.e., protium)–deuterium loading of Er metal are reported. Lattice parameters for the varying hydrogen–deuterium compositions followed Vergard’s law behavior. The cubic lattice parameter at room temperature for ErH2−xDx obeys a linear relationship according to the formula a=5.1287−1.1120×10−4x, where a is the lattice parameter of the fluorite-type structure and x is the mole percent of deuterium. Microstrain measurements suggest a possible ordering of hydrogen and deuterium in the composition ErH1D1.

Type
NEW DIFFRACTION DATA
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonnet, J. E. and Daou, J. N. (1977). “Rare-earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation,” J. Appl. Phys. JAPIAU 10.1063/1.323717 48, 964968.CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-ray Diffraction (Addison–Wesley, Reading, Massachusetts), 2nd ed., p. 292.Google Scholar
Ferrizz, R. M., Louck, T. J., and King, S. H. (2008). PCT Apparatus: Overview (Internal Report No. SAND2007-8105). Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California.Google Scholar
Jenkins, R. and Snyder, R. L. (1996a). Introduction to X-Ray Powder Diffractometry (Wiley, New York), p. 249.CrossRefGoogle Scholar
Jenkins, R. and Snyder, R. L. (1996b). Introduction to X-Ray Powder Diffractometry (Wiley, New York), pp. 8994.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996). “POWDERCELL - A program for the representation and manipulation of crystal structures and calculation of the resulting x-ray powder patterns,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889895014920 29, 301303.CrossRefGoogle Scholar
Libowitz, G. G. (1965). The Solid-State Chemistry of Binary Metal Hydrides (W. A. Benjamin, New York), p. 27.Google Scholar
Lundin, C. E. (1968a). “The erbium-hydrogen system,” Trans. Metall. Soc. AIME TMSAAB 242, 903907.Google Scholar
Lundin, C. E. (1968b). “Thermodynamics of the erbium deuterium system,” Trans. Metall. Soc. AIME TMSAAB 242, 11611165.Google Scholar
Oesterreicher, H., Bittner, H., and Kothari, B. (1978). “Laser evaporation and condensation of Er in hydrogen and inert atmosphere,” J. Solid State Chem. JSSCBI 10.1016/0022-4596(78)90137-8 26, 9799.CrossRefGoogle Scholar
Pebler, A. and Wallace, W. E. (1962). “Crystal structure of some lanthanide hydrides,” J. Phys. Chem. JPCHAX 10.1021/j100807a033 66, 148151.CrossRefGoogle Scholar
Ratishvili, I. G. and Vajda, P. (1996). “Hydrogen ordering in superstoichiometric rare-earth hydrides for a system with an energy-constants ratio p=V 2/V 1<1:LaH 2+x,” Phys. Rev. B PRBMDO 53, 581587.CrossRefGoogle Scholar
Rodriguez, M. A., Snow, C. S., Wixom, R. R., Browning, J. F., and Llobet, A. (2008). In-Situ Time-of-Flight Neutron Diffraction of ErD2 (β-Phase) Formation During D2 loading (Internal Report No. SAND2008-3737). Sandia National Laboratories, Albuquerque, New Mexico.Google Scholar
Schleid, T. and Meyer, G. (1989). “Hydrogen(deuterium)-stabilized and lithium-intercalated erbium monochloride: An x-ray single-crystal and neutron diffraction study,” J. Less-Common Met. JCOMAH 156, 161171.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criteron for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 10.1107/S002188987901178X 12, 6065.CrossRefGoogle Scholar
Udovic, T. J., Huang, Q., and Rush, J. J. (2000). “Hydrogen and deuterium site separation in fcc-based mixed-isotope rare-earth hydrides,” Phys. Rev. B PRBMDO 10.1103/PhysRevB.61.6611 61, 66116616.CrossRefGoogle Scholar
Vajda, P. and Daou, J. N. (1994). “Magnetic and metal-semiconductor transitions in ordered and disordered ErH(D)2+x,” Phys. Rev. B PRBMDO 10.1103/PhysRevB.49.3275 49, 32753282.CrossRefGoogle Scholar