Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:55:59.357Z Has data issue: false hasContentIssue false

X-ray powder diffraction data and structural study of Cd4GeSe6

Published online by Cambridge University Press:  10 January 2013

J. A. Henao
Affiliation:
Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Apdo. 40, La Hechicera, Mérida 5251, Venezuela
J. M. Delgado*
Affiliation:
Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Apdo. 40, La Hechicera, Mérida 5251, Venezuela
M. Quintero
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
*
b)To whom correspondence should be addressed.

Abstract

The X-ray powder diffraction pattern of the room temperature phase of Cd4GeSe6, a II4 □ IV VI6 semiconducting material, has been recorded and evaluated. This material crystallizes in the monoclinic space group Cc [No. 9] with a=12.847(3), b=7.407(2), c=12.854(2) Å, β=109.82(1)°, and Z=4. The powder diffraction pattern was also used to refine the crystal structure of this material employing the Rietveld method. The refinement of 56 parameters led to RWP=13.2%, RP=9.95% for 3751 step intensities and RB=7.05% and RF=5.20% for 833 reflections. Cd4GeSe6 can be considered a defect “adamantane-structure” material with a sphalerite-related superstructure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Deb, S. K., and Zunger, A. (Eds.) (1987). Ternary and Multinary Compounds. Proceedings of the 7th International Conference. MRS Conference Proceedings (MRS, Pittsburgh, PA).Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dittmar, G., and Schäfer, H. (1974). “Die kristallstruktur von germaniumdiselenid,” Acta Crystallogr. Sec. B 32, 27262728.CrossRefGoogle Scholar
Henao, J. A. (1977). Ph.D. Thesis, Universidad de Los Andes.Google Scholar
Henao, J. A., Delgado, J. M., and Quintero, M. (1997). “X-ray powder data and structural study of Fe 2GeSe 4.” Powder Diffr. (submitted).Google Scholar
Kaldis, E., and Widmer, R. (1965). “Nucleation and growth of single crystals by chemical transport. I-cadmiun-germanium sulphide,” J. Phys. Chem. Solids 26, 16971700.CrossRefGoogle Scholar
Kaldis, E., Krausbauer, L., and Widmer, R. (1967). “Cd 4SiS 6 and Cd 4SiSe 6, New ternary compounds,” J. Electrochem. Soc. 114, 10741076.CrossRefGoogle Scholar
Krebs, B., and Mandt, J. (1972). “Struktur und eigenschaften von Cd 4SiS 6 zur kenntnis von Cd 4SiSe 6,Z. Anorg. Allg. Chem. 388, 193206.CrossRefGoogle Scholar
Masumoto, K., Irie, T., Iida, S., and Yamamoto, N. (Eds.) (1993). Proceedings of the 9th International Conference on Ternary and Multinary Compounds, Jpn. J. Appl. Phys. 32 Supl. 32-3.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A fortran program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141. (NBS*AIDS83 is a development of NBS*AIDS80).Google Scholar
Parthé, E. (1995). in Intermetallic Compounds: Principles and Applications, edited by J. H. Westbrook and R. L. Fleischer (Wiley, Chichester, U. K.), Chap. 14, pp. 343–362.Google Scholar
Radautsan, S. I., and Schwab, C. (Eds.) (1990). Proceedings of the Eighth International Conference on Ternary and Multinary Compounds (Institute of Applied Physics, Shtiintsa Press, Kishinev).Google Scholar
Rodríguez-Carvajal, J. (1996). “FULLPROF: Rietveld, profile matching and integrated intensity refinement of x-ray and/or neutron data,” Version 3.1c. Laboratorie Léon Brillouin, C.E.A., Saclay, France.Google Scholar
Schock, H. W., and Walter, T. C. (Eds.) (1996). Proceedings of the 10th International Conference on Ternary and Multinary Compounds. Cryst. Res. Technol. 31 (Special Issues 1 and 2).Google Scholar
Sermen, J., Perez, G., and Hagenmuller, P. (1968). “Les systèmes SiS 2-MS et GeS 2-MS (M=Cd, Hg) entre 800 et 1000 °C,” Bull. Soc. Chim. Fr. 2, 561566.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “F n: A criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Smith, D. K., and Smith K. L. (1992). “MICRO-POWD. A program for calculating x-ray powder diffraction patterns on a PC,” Ver. 2.2, Materials Data, Inc., Livermore, CA.Google Scholar
Stevenson, A. W., and Barnea, Z. (1984). “Anharmonic thermal vibrations and the position parameter in wurtzite structures. II. Cadmium selenide,” Acta Crystallogr. Sec. B 40, 530537.CrossRefGoogle Scholar
Susa, K., and Steinfink, H. (1971). “GeCd 4S 6, A new defect tetrahedral structure type,” Inorg. Chem. 10, 17541756.Google Scholar