Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T19:23:52.681Z Has data issue: false hasContentIssue false

X-ray powder diffraction and dielectric study of BaTi1−x(Zn1/3Nb2/3)xO3 (x=0.025 and 0.9)

Published online by Cambridge University Press:  29 February 2012

L. Khemakhem
Affiliation:
Laboratoire des Sciences des Matériaux et d’Environnement and Laboratoire des Matériaux Ferroélectriques, Faculté des Sciences de Sfax, B.P. 802, 3018 Sfax, Tunisie
A. Kabadou
Affiliation:
Laboratoire des Sciences des Matériaux et d’Environnement, Faculté des Sciences de Sfax, B.P. 802, 3018 Sfax, Tunisie
A. Ben Salah
Affiliation:
Laboratoire des Sciences des Matériaux et d’Environnement, Faculté des Sciences de Sfax, B.P. 802, 3018 Sfax, Tunisie
N. Abdelmoula
Affiliation:
Laboratoire des Matériaux Ferroélectriques, Faculté des Sciences de Sfax, B.P. 802, 3018 Sfax, Tunisie

Abstract

Polycrystalline BaTi1−x(Zn1/3Nb2/3)xO3 (x=0.025 and 0.9) compounds were synthesized successfully and studied by XRD and dielectric measurements. The effects of the Ti/(Zn,Nb) ratio on the structure and dielectric properties of the compounds were investigated. XRD results indicated that the crystal structure of the x=0.09 compound is cubic perovskite with space group Pm3m and a=4.0095(4) Å. For the x=0.09 compound, a splitting of the (200) peak was observed near 40.2°, indicating that the crystal structure changed from cubic to tetragonal, with space group P4mm, a=4.026(4) Å, and c=4.0091(4) Å. Rietveld refinement of the crystal structures led to final confidence factors Rp=0.0353 and Rp=0.0349 for x=0.025 and 0.9, respectively. Dielectric measurements showed a relaxor behavior present in BaTi0.1(Zn1/3Nb2/3)0.9.

Type
TECHNICAL ARTICLES
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelkefi, H., Khemakhem, H., Vélu, G., Carru, J. C., and Von Der Mühll, R. (2005). “Dielectric properties and ferroelectric phase transitions in BaxSr1−xTiO3 solid solution,” J. Alloys Compd. JALCEU 10.1016/j.jallcom.2005.03.007 399, 16.CrossRefGoogle Scholar
Abdelmoula, N., Chaabane, H., Khemakhem, H., Von der Mühll, R., and Simon, A. (2006). “Relaxor or classical ferroelectric behaviour in A site substituted perovskite type Ba1−x(Sm0.5Na0.5)xTiO3,” Phys. Status Solidi A PSSABA 10.1002/pssa.200521465 203, 987996.CrossRefGoogle Scholar
Aydi, A., Khemakhem, H., Boudaya, C., Von der Mühll, R., and Simon, A. (2004). “New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO3–BaSnO3,” Solid State Sci. SSSCFJ 10.1016/j.solidstatesciences.2003.12.006 6, 333337.CrossRefGoogle Scholar
Bahri, F., Khemakhem, H., Simon, A., Von der Mühll, R., and Ravez, J. (2003). “Dielectric and pyroelectric studies on the Ba1−3aBi2aTiO3 classical and relaxor ferroelectric ceramics,” Solid State Sci. SSSCFJ 10.1016/S1293-2558(03)00180-8 5, 12351238.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Cross, L. E. (1987). “Relaxor ferroelectrics,” Ferroelectrics FEROA8 76, 241267.CrossRefGoogle Scholar
Cross, L. E. (1994). “Relaxorferroelectrics: an overview,” Ferroelectrics FEROA8 151, 305320.CrossRefGoogle Scholar
Gotor, F. J., Real, C., Dianez, M. J., and Criado, J. M. (1996). “Relationships between the texture and structure of BaTiO3 and its tetragonal→cubic transition enthalpy,” J. Solid State Chem. JSSCBI 123, 301305.CrossRefGoogle Scholar
Khemakhem, H., Simon, A., Von der Mühll, R., and Ravez, J. (2000). “Relaxor or classical ferroelectric behaviour in ceramics with composition Ba1−xNaxTi1−xNbxO3,” J. Phys.: Condens. Matter JCOMEL 10.1088/0953-8984/12/27/313 12, 59515959.Google Scholar
Khemakhem, L., Kabadou, A., Maalej, A., Ben Salah, A., Simon, A., and Maglione, M. (2008a). “New relaxor ceramic with composition BaTi1−x(Zn1/3Nb2/3)xO3,” J. Alloys Compd. JALCEU 452, 451455.CrossRefGoogle Scholar
Khemakhem, L., Maalej, A., Kabadou, A., Ben Salah, A., Simon, A., and Maglione, M. (2008b). “Dielectric ferroelectric and piezoelectric properties of BaTi0.975(Zn1/3Nb2/3)0.025O3 ceramic,” J. Alloys Compd. JALCEU 452, 441445.CrossRefGoogle Scholar
Komine, S. and Iguchi, E. (2002a). “Phase transitions and the weak relaxor ferroelectric phase in Ba7/8(La0.5Na0.5)1/8TiO3,” J. Phys.: Condens. Matter JCOMEL 10.1088/0953-8984/14/36/304 14, 84458454.Google Scholar
Komine, S. and Iguchi, E. (2002b). “Dielectric properties in A-site substitution type relaxor ferroelectric perovskite titanates Ba1−x(La0.5Na0.5)xTiO3,” J. Phys.: Condens. Matter JCOMEL 10.1088/0953-8984/14/8/330 14, 20432051.Google Scholar
Kwei, G. H., Lawson, A. C. Jr., Billinge, S. J. L., and Cheong, S. W. (1993). “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem. JPCHAX 10.1021/j100112a043 97, 23682377.CrossRefGoogle Scholar
Lines, M. E. and Glass, A. M. (1977). Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford).Google Scholar
Louër, D. and Louër, M. (1972). “Méthode d'essais et erreurs pour l'indexation automatique des diagrammes de poudre,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889872009483 5, 271275.CrossRefGoogle Scholar
Ravez, J. and Simon, A. (1998). “Perovskite relaxor ferroelectrics free from lead,” J. Korean Phys. Soc. KPSJAS 32, S955S956.Google Scholar
Ravez, J. and Simon, A. (2000). “Lead-free ferroelectric relaxor ceramics derived from BaTiO3,” Eur. Phys. J.: Appl. Phys. EPAPFV 10.1051/epjap:2000140 11, 913.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A Program for Rietveld Refinement and Pattern Matching Analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Sakamoto, W., Masuda, Y., and Yogo, T. (2006). “Fabrication and properties of perovskite Pb(Yb,Nb)O3–PbTiO3 thin films through a sol-gel process,” J. Alloys Compd. JALCEU 408, 543546.CrossRefGoogle Scholar
Setter, N. and Cross, L. E. (1980). “The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys. JAPIAU 10.1063/1.328296 51, 43564360.CrossRefGoogle Scholar
Uchino, K. (1994). “Relaxor ferroelectric devices,” Ferroelectrics FEROA8 151, 321330.CrossRefGoogle Scholar
Wang, Y., Li, L., Qi, J., and Gui, Z. (2002). “Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics,” Ceram. Int. CINNDH 10.1016/S0272-8842(02)00023-8 28, 657661.CrossRefGoogle Scholar
Yao, X., Chen, Z. L., and Cross, L. E. (1983). “Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. JAPIAU 10.1063/1.332453 54, 33993403.Google Scholar