No CrossRef data available.
Article contents
X-ray powder diffraction analysis of 2-exo-(β-pyridyl)-6-exo-phenyl-7-oxa-1-azabicyclo[2.2.1]heptane
Published online by Cambridge University Press: 05 March 2012
Abstract
The X-ray powder diffraction pattern for a bridgehead heterocyclic system was determined. 2-exo-(β-pyridyl)-6-exo-phenyl-7-oxa-1-azabicyclo[2.2.1]heptane, C16H16N2O, is triclinic with refined unit cell parameters a=1.1012(2), b=1.3950(2), c=1.0074(3) nm, α=111.09(2)°, β=104.97(2)°, γ=77.38(2)°, V=1.3813(3) nm3, Z=4, and Dx=1.212 g/cm3 with space group P-1 (No. 2).
- Type
- New Diffraction Data
- Information
- Copyright
- Copyright © Cambridge University Press 2003
References
Boultif, A.and Louer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987–993. acr, JACGAR CrossRefGoogle Scholar
Daly, J. W. (1998). “Thirty years of discovering arthropod alkaloids in amphibian skin,” J. Nat. Prod. ZZZZZZ 61, 162–172.CrossRefGoogle ScholarPubMed
deWolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108–113. acr, JACGAR CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838–838. acr, JACGAR CrossRefGoogle Scholar
Fletcher, S. R., Baker, R., Chambers, M. S., Herbert, R. H., Hobbs, S. C., Thomas, S. R., Verrier, H. M., Watt, A. P., and Ball, R. G. (1994). “Total synthesis and determination of the absolute configuration of epibatidine,” J. Org. Chem. JOCEAH 59, 1771–1778. jog, JOCEAH CrossRefGoogle Scholar
Hoffman, R. W.and Endesfelder, A. (1986). “Stereoselective intramolecular nitrone cycloaddition in the synthesis of Lasubine II,” Liebigs Ann. Chem. LACHDL 11, 1823–1836. 8zc, LACHDL CrossRefGoogle Scholar
Lumma, W. C. Jr. (1969). “exo-2-Phenyl-1-aza-7-oxabicyclo[2.2.1]heptane, a novel heterobicyclic ring system,” J. Am. Chem. Soc. JACSAT 91, 2820–2821. acs, JACSAT CrossRefGoogle Scholar
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., and Wong-Ng, W. (1986). “Methods for producing standard X-ray diffraction powder patterns,” Powder Diffr. PODIE2 1, 40–43. pdj, PODIE2 CrossRefGoogle Scholar
Mighell, A. D., Bubbard, C. R., and Stalick, J. K., (1981) “NBS*AIDS80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141 (NBS*AIDS is a development of NBS*AIDS80).CrossRefGoogle Scholar
Smith, G. S.and Snyder, R. L. (1979). “F(N): A criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 60–65. acr, JACGAR CrossRefGoogle Scholar
Varlamov, A., Kouznetsov, V., Zubkov, F., Chernyshev, A., Shurupova, O., Vargas Me´ndez, L. Y., Palma, A. R., Rivero Castro, J., and Rosas-Romero, F. J. (2002). “An improved and stereoselective route to all cis-2,6-disubstituted 4-hydroxypiperidines from accessible 4-substituted 4-N-benzyl amino-1-butenes,” Synthesis SYNTBF 6, 771–783. syn, SYNTBF CrossRefGoogle Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semiexhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367–370. acr, JACGAR CrossRefGoogle Scholar