Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T13:31:31.487Z Has data issue: false hasContentIssue false

X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials

Published online by Cambridge University Press:  15 May 2014

H. Pöllmann*
Affiliation:
University of Halle, Von Seckendorffplatz 3, 06120 Halle, Germany
R. Kaden
Affiliation:
University of Halle, Von Seckendorffplatz 3, 06120 Halle, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Calcium monoaluminate is the main phase in calcium aluminate cements and participates in the hydration, forming calcium aluminate hydrates. The amount of incorporation of foreign ions influences the hydration behaviour. Strontium aluminate is an important phase in producing phosphorescent materials when doped with rare-earth elements (REE) such as Eu, Dy, and La. These monoaluminates occur in different forms. Monocalcium aluminate forms a monoclinic and an orthorhombic modification, whereas monostrontium aluminate forms a monoclinic low-temperature and a hexagonal high-temperature form. Monoclinic calcium monoaluminate and monoclinic strontium aluminate form a partial solid-solution series. The hydration behaviour of different solid solutions was also investigated using calorimetry. The newly formed strontium aluminate hydrates could be identified while similar strontium aluminate hydrates are formed. Solid solutions of strontium- and calcium-aluminate hydrates will be investigated.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avdeev, M., Yakovlev, S., Yaremchenko, A. A. and Kharton, V. V. (2007). “Transitions between P21, P63(√3A), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180, 35353544.Google Scholar
Borovkova, L. B., Borodina, T. I., Evdokimova, T. A., Melehina, T. A. and Pakhomov, E. P. An investigation into the hardening of Monostrontium Aluminate. in Proc. of the 9th Int. Congress on the Chemistry of Cement, New Delhi.Google Scholar
Braniski, A. (1957). “Barium- und strontium-zemente”, Zement-Kalk-Gips N5, 176184.Google Scholar
Braniski, A. (1965). “Infrarot-Untersuchungen der hydratation des Mono-Ca.Sr-, Ba-Aluminats und der silikatischen Ca-, Sr-, Ba-Zemente”, Zement-Kalk-Gips N4, 164171.Google Scholar
Braniski, A. (1967). “Strontium-zemente”, Zement-Kalk-Gips N3, 96101.Google Scholar
Brisi, C. (1962). “A. Appendino-Montorsi. subsolidus phase equilibria in the system CaO–BaO–Al2O3 at 1250 °C,” Ann. Chim. (Rome) 52 (9–10), 785792.Google Scholar
Carlson, E. T. (1955). “A study of some strontium aluminate and calcium–strontium aluminate solid solutions,” J. Res. Natl. Bur. Stand. 54(6), 329331.Google Scholar
Carlson, E. T. (1957). “Some observations on hydrated monocalcium aluminate and monostrontium aluminate”, 59(2), 107–111.Google Scholar
Chatterjee, A. K. (2009). “Re-examining the prospects of aluminous cements based on alkali-earth and rare-earth oxides,” Cem. Concr. Res. 39, 981988.Google Scholar
Dear, P. S. (1957). “Synthesis of strontium aluminates,” Bull.Va. Polytech. Inst. 50(117).Google Scholar
Dougill, M. W. (1957). “Crystal structure of calcium monoaluminate,” Nature (UK) 180, 292–29.Google Scholar
Franco, M. (1959). “System SrO–Al2O3,” Chim. Ind. (Milan) 41, 114.Google Scholar
Fu, C.-B., Dong, H.-J., Liu, C.-Y. and Wang, Y.-P. (2010). “Synthesis, structure and luminescence properties of phosphor CaAl2O4 activated by Tb +,” Optoelectron. Adv. Mater., Rapid Commun. 4(1), 7376.Google Scholar
Fukuda, K. and Fukushima, K. (2005). “Crystal structure of hexagonal SrAl2O4 at 1073 K,” J. Solid State Chem. 178, 27092714.Google Scholar
Horkner, W. and Muller-Buschbaum, H. (1975). “Zur Kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983984.Google Scholar
Huang, P., Cui, C.-e. and Hao, H. (2009). “Eu, Dy co-doped SrAl2O4 phosphors prepared by sol-gel-combustion processing,” J. Sol-Gel Sci. Technol. 50, 308313.Google Scholar
Hwang, K.-S., Kang, B.-A., Kim, S.-D., Hwangbo, S. and Kim, J.-T. (2011). “Cost-effective electrostatic-sprayed SrAl2O4:Eu2+ phosphor coatings by using salted sol–gel derived solution,” Bull. Mater. Sci., 34(5), 10591062. Indian Academy of Sciences.Google Scholar
Ito, S., Banno, S., Suzuki, K. and Inagaki, M. (1977). “Phase transition in SrAl2O4,” Z. Phys. Chem. Neue Folge 105(8), 173178.Google Scholar
Ito, S., Banno, S., Suzuki, K. and Inagaki, M. (1979). “Solid solubilities in the alkaline-earth metal aluminates,” Yogyo Kyokaishi, 87(7), 344349.CrossRefGoogle Scholar
Job, R., Yamada, H. and Xu, C.-N.: Luminescence of Eu2+ doped SrAl2O4.Google Scholar
Kaduk, J. A. (2011). “Crystal structure of monoclinic Sr2.4Ca0.6Al2O6,” Powder Diffr., 26(2).Google Scholar
Knopp, R. (1962). Über die Luminiszenz aktivierter Erdalkalialuminate in Abhängigkeit von ihrer Struktur – Diss. TU München.Google Scholar
Kuroki, T., Saito, Y., Matsui, T. and Morita, K. (2009). “Evaluation of phase diagrams for the Al2O3–CaO–SrO system by in-situ observation using confocal laser microscope,” Mater. Trans., 50, 254260.Google Scholar
Massazza, F. and Cannas, M. (1959). “System CaO–SrO–Al2O3, subsolidus,” Ann. Chim. (Rome) 49(7–8), 13421350.Google Scholar
Massazza, F. and Sirchia, E. (1959). “Phase equilibrium diagram of the system CaO–SrO–Al2O3,” 49(7–8), 1359–1369.Google Scholar
Mohr, P. (2011). Synthese und Charakterisierung von Verbindungen in den Systemen SrO–Al2O3 und BaO-Al2O3 – Dipl.-Arbeit Universität Halle.Google Scholar
Pöllmann, H. (2012). “Calcium aluminate cements, raw materials, differences, properties and hydration,” Rev. Mineral., 74, 182.Google Scholar
Prodjosantoso, A. K. and Kennedy, B. J. (2002). “Synthesis and evolution of the crystalline phases in Ca1-xSrxAl2O4,” J. Solid State Chem., 168, 229236.Google Scholar
Prodjosantoso, A. K. and Kennedy, B. J. (2003). “Solubility of SrAl2O4 in CaAl2O4 – a high resolution powder diffraction study,” Mater. Res. Bull. 38(1), 7987.Google Scholar
Raab, B. and Pöllmann, H. (2010). Investigations of the hydration behaviour of high reactive pure cement phases. in Proc. of the 32nd Int. Conf. on Cement Microscopy, S. 1-20 CD, New Orleans, Louisiana.Google Scholar
Rodehorst, U., Carpenter, M. A., Marion, S. and Henderson, C. M. B. (2003). “Structural phase transitions and mixing behaviour of the Ba-Aluminate (BaAl2O4)-Sr-Aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 9891013.Google Scholar
Saines, P. J. and Kennedy, B. J. (2006). Implications of the solubility of trivalent lanthanides in AAl2O4 (A = Ca, Sr. and Ba) for their role in phosphors. School of Chemistry, the University of Sydney, Sydney, New South Wales, Australia, Abstract.Google Scholar
Schulze, A.-R. and Müller-Buschbaum, H. K. (1981). “Zur Struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. 475, 205210. J.A. Barth, Leipzig.CrossRefGoogle Scholar
Shukla, A. (2011). Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides – Diss. EPT Montreal.Google Scholar
Witzmann, H. and Knopp, R. (1963). “Über die Lumineszenz aktivierter Erdalkalialuminate in Abhängigkeit von ihrer Struktur,” Berichte der Bunsengesellschaft, Bd. 67, No. 4.Google Scholar
Ye, X., Zhuang, W., Wang, J., Yuan, W. and Qiao, Z. (2006). “Thermodynamic description of SrO-Al2O3 system and comparison with similar systems,” J. Phase Equilib. Diffus. 28(4), 362368.CrossRefGoogle Scholar