Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T23:00:17.577Z Has data issue: false hasContentIssue false

X-ray diffractometry studies and lattice parameter calculation on KNO3–NH4NO3 solid solutions

Published online by Cambridge University Press:  01 March 2012

Wen-Ming Chien
Affiliation:
Metallurgical and Materials Engineering, University of Nevada–Reno, Reno, Nevada 89557
Dhanesh Chandra*
Affiliation:
Metallurgical and Materials Engineering, University of Nevada–Reno, Reno, Nevada 89557
Jennifer Franklin
Affiliation:
Metallurgical and Materials Engineering, University of Nevada–Reno, Reno, Nevada 89557
Claudia J. Rawn
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6064
Abdel K. Helmy
Affiliation:
Special Devices Inc., 14370 White Sage Road, Moorpark, California 93021
*
a)Electronic mail: [email protected]

Abstract

The solid-state phase transitions of the KNO3–NH4NO3 solid solutions have been determined by high temperature X-ray diffractometry, and lattice parameter calculation has also been performed. Ammonium nitrate (AN) is of great use for gas generators of automobile air bag systems. The X-ray diffraction results showed the single (AN) phase III from 5% to 20% KNO3 in NH4NO3 and up to 373 K, which is the important temperature range for the air bag gas generator applications. The X-ray diffraction patterns of the low temperature KNO3 phase (KN II) are from 92% to 100% KNO3 composition range and up to 393 K temperature. The high temperature KNO3 phase (KN I) showed very broad composition range from 20% up to 100% KNO3 at various temperature ranges. The lattice parameters of the NH4NO3-rich (AN III) and KNO3-rich (KN II and KN I) solid solutions have been calculated at different temperature range. The volumes of AN III phase decrease from 0.3201(4) to 0.3166(1) nm3 at room temperature and from 0.3250(6) to 0.3215(3) nm3 at 373 K as the compositions increase from 5% to 20% KNO3. The lattice constants of the hexagonal KN I phase show that there is no significant change in a direction when the temperature increases. Details of X-ray results, lattice expansions, and equations during heating are presented.

Type
XRD Characterization
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtee, M., Smolander, K. J., Lucas, B. W., and Hewat, A. W. (1983). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 10.1107/S0108270183005806 C39, 651655.Google Scholar
Brown, R. N. and McLaren, A. C. (1962). Proc. R. Soc. London PRLAAZ 266, 329343.Google Scholar
Cady, H. H. (1983). Phase Stabilization of Ammonium Nitrate, CPIA Publication No. 377, Johns Hopkins University, Applied Physics Laboratory, pp. 914.Google Scholar
Chandra, D. and Helmy, A. K. (1999). “X-ray diffraction and differential calorimetry investigation of ammonium nitrate solid solutions,” Interium Report to TRW Vehicle Safety Systems.Google Scholar
Chien, W. (2003). Ph.D. dissertation, University of Nevada, Reno.Google Scholar
Choi, C. S. and Prask, H. J. (1983). Phase Stabilization of Ammonium Nitrate, CPIA Publication No. 377, Hopkins University, Applied Physics Laboratory, pp. 8796.Google Scholar
Choi, C. S. and Prask, H. J. (1982). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B38, 23242328.Google Scholar
Choi, C. S., Prask, H. J., and Prince, E. (1980). J. Appl. Crystallogr. JACGAR 13, 403409.CrossRefGoogle Scholar
Deimling, A., Engel, W., and Eisenreich, N. (1992). J. Therm. Anal. JTHEA9 38, 843853.Google Scholar
Edwards, D. A. (1931). Z. Kristallogr. ZEKRDZ 80, 154163.Google Scholar
Goodwin, T. H. and Whetstone, J. (1947). J. Chem. Soc. Abs. 14551461.Google Scholar
Holden, J. R. and Dickinson, C. W. (1975). J. Phys. Chem. JPCHAX 10.1021/j100570a011 79, 249256.CrossRefGoogle Scholar
Lucas, B. W., Ahtee, M., and Hewat, A. W. (1979). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 10.1107/S0567740879005525 B35(5), 10381041.CrossRefGoogle Scholar
Lucas, B. W., Ahtee, M., and Hewat, A. W. (1980). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B36, 20052008.Google Scholar
Nimmo, J. K. and Lucas, B. W. (1976). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B32, 19681971.Google Scholar
Nimmo, J. K. and Lucas, B. W. (1973). J. Phys. C JPSOAW 10.1088/0022-3719/6/2/001 6, 201211.Google Scholar
Shinnaka, Y. (1962). J. Phys. Soc. Jpn. JUPSAU 17, 820828.CrossRefGoogle Scholar
Stromme, K. O. (1969). Acta Chem. Scand. (1947-1973) ACSAA4 23, 16251636.Google Scholar
Tahvonen, P. E. (1947). Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys. AFMPA6 20.Google Scholar