Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T22:56:54.380Z Has data issue: false hasContentIssue false

X-ray diffraction study of HgBa2CuO4+δ at high pressures

Published online by Cambridge University Press:  10 January 2013

Eduardo J. Gonzalez
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Winnie Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Gasper J. Piermarini
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Christian Wolters
Affiliation:
Florida State University, National High Magnetic Field Laboratory, Tallahassee, Florida 32306-4005
Justin Schwartz
Affiliation:
Florida State University, National High Magnetic Field Laboratory, Tallahassee, Florida 32306-4005

Abstract

An in situ high pressure study using energy dispersive X-ray diffraction has been carried out on the polycrystalline high-Tc superconductor, HgBa2CuO4+δ (Hg-1201), to study its phase stability under pressure and also to measure its compressibility and bulk modulus. No evidence of pressure-induced polymorphism was found in the pressure range investigated, i.e., from 0.1 MPa (1 atm) to 5 GPa. The compound exhibited anisotropic elastic properties. The axial compressibility along the c axis was measured to be (3.96±0.35)×10−3GPa−1 and along the a axis (3.42±0.13)×10−3GPa−1, corresponding to an anisotropy ratio of 1.16±0.11. The bulk modulus was determined to be (94.7±4.2) GPa and, assuming a Poisson's ratio of 0.2, Young's modulus was estimated to be (170±8) GPa.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B. (1981). “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness. I. Direct Crack Measurements,” J. Am. Ceram. Soc. 64, 533538.CrossRefGoogle Scholar
Antipov, E. V., Loureiro, S. M., Chaillout, C., Capponi, J. J., Bordet, P., Tholence, J. L., Putilin, S. N., and Marezio, M. (1993). “The Synthesis and Characterization of the HgBa 2Ca 2Cu 3O 8+δ and HgBa 2Ca 3Cu 4O 10+δ,Physica C, 215, 110.CrossRefGoogle Scholar
Appleman, D. E., and Evans, H. T., Jr. (1973). Rep. PB 216188, U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22151.Google Scholar
Asab, A., Armstrong, A. R., Gameson, I., and Edwards, P. P. (1995). “Single-Step Synthesis and Crystal Structure of HgBa 2CuO 4+δ with a T c of 97 K,” Physica C, 255, 180187.CrossRefGoogle Scholar
Block, S., Piermarini, G. J., Munro, R. G., and Wong-Ng, W. (1987). “The bulk Modulus and Young's Modulus of the Superconductor Ba 2YCu 3O 7,” Adv. Ceram. Mater. 2, 601605.CrossRefGoogle Scholar
Cao, L., Xue, Y. Y., Chen, F., Xoing, Q., Meng, R. L., Ramiera, D., Chu, C. W., Eggert, J. H., and Mao, H. K. (1994). “Superconductivity up to 164 K in HgBa 2Ca m−1Cu mO 2m+2+δ (m=1,2,3) Under Quasi-hydrostatic PressuresPhys. Rev. B. 50, 42604263.Google Scholar
Cao, Y., Xoing, Q., Xue, Y. Y., and Chu, C. W. (1994a). “Pressure Effect on the T c of HgBa 2CuO 4+δ with 0.07≤δ≤0.39Phys. Rev. B., Rapid Commun. 50, 420424.Google Scholar
Chmaissem, O., Huang, Q., Putlin, S. N., Marezio, M., and Santoro, A. (1993). “Neutron Powder Diffraction Study of the Crystal Structures of HgBa 2CuO 4+δ and HgBaO 2,Physica C, 212, 259265.CrossRefGoogle Scholar
Chu, C. W. (1996). “Unusual High Temperature Superconductors: HgBa 2Ca n−1Cu nO 2n+2+δ with n=1,2,3,…,” Proceedings of Quantum Theory of Real Materials, Festschrift to Honor Marvin Cohen (to be published).CrossRefGoogle Scholar
Cornelius, A. L., and Schilling, J. S. (1993). “A Model Calculation of the Anisotropic Compressibility for Superconducting HgBa 2Ca n−1Cu nO 2n+2+δ,Physica C 218, 369372.CrossRefGoogle Scholar
Eggert, J. H., Hu, J. Z., Mao, H. K., Beauvais, L., Meng, R. L., and Chu, C. W. (1994). “Compressibility of the HgBa 2Ca n−1Cu nO 2n+2+δ (n=1,2,3) High-Temperature Supercon-ductors,” Phys. Rev. B 49, 1529915304.CrossRefGoogle Scholar
Garvey, R. (1986). PC version of the NBSLSQ program, Chemistry Department, North Dakota State University.Google Scholar
Huang, Q., Lynn, J. W., Xiong, Q., and Chu, C. W. (1995). “Oxygen Dependence of the Crystal Structure of HgBa 2CuO 4+δ and its Relation to Superconductivity,” Phys. Rev. B 52, 462470.CrossRefGoogle ScholarPubMed
Hunter, B. A., Jorgensen, J. D., Wagner, J. L., Radaelli, P. G., Hinks, D. G., Shaked, H., and Hitterman, R. L. (1994). “Pressure-Induced Structural Changes in Superconducting HgBa 2Ca n−1Cu nO 2n+2+δ (n=1,2,3) Compounds,” Physica C 221, 110.CrossRefGoogle Scholar
Izumi, F., Jorgensen, J. D., Shimakawa, Y., Kubo, Y., Manakao, T., Pei, S., Matsumoto, T., Hitterman, R. L., and Kanke, Y. (1992). “Pressure-Induced Structural Changes and Charge Transfer in Tl 2Ba 2CuO 6+z,Physica C 193, 426436.CrossRefGoogle Scholar
Jorgensen, J. D., Pei, S., Lightfoot, P., Hinks, D. G., Veal, B. W., Dabrowski, B., Paulikas, A. P., Kleb, R., and Brown, I. D. (1990). “Pressure-Induced Charge Transfer and dT c/dP in YBa 2Cu 3O 7−x,Physica C 171, 93.CrossRefGoogle Scholar
Kingery, W. D., Bowen, H. K, and Ulhmann, D. R. (1976). Introduction to Ceramics (Wiley, New York), 2nd ed., pp. 770–771.Google Scholar
Klehe, A. K., Gangopadhyay, A. K., Diederichs, J., and Schilling, J. S. (1993). “Dependence of the Superconducting Transition Temperature of HgBa 2CuO 4+δ on Hydrostatic Pressure,” Physica C 213, 266270.CrossRefGoogle Scholar
type="journal">Klehe, A. K., Schilling, J. S., Wagner, J. L., and Hinks, D. G. (1994). “Hydrostatic Pressure Dependence of the Superconducting Transition Temperature of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ,Physica C 223, 313.CrossRefGoogle Scholar
Klotz, S., and Schilling, J. S. (1993). “Hydrostatic Pressure Dependence of the Superconducting Transition Temperature to 7 GPa in Bi 2CaSr 2Cu 2O 8+y as a Function of Oxygen Content,” Physica C 209, 499506.CrossRefGoogle Scholar
Loureiro, S. M., Antipov, E. V., Tholence, J. L., Capponi, J. J., Chmaissem, O., Huang, Q., and Marezio, M. (1993). “Synthesis and Structural Characterization of the 127 K HgBa 2CaCu 2O 6.22 Superconductor,” Physica C 217, 253.CrossRefGoogle Scholar
Munro, R. G., Block, S., Piermarini, G. J., and Mauer, F. A. (1984). In Materials Science Research, Emergent Process Methods for High Technology Ceramics Vol. 17, edited by R. F. Davis, H. Palmour, III, and R. L. Porter (Plenum, New York).Google Scholar
Munro, R. G., Block, S., and Piermarini, G. J. (1984a). “Reliability of the Isothermal Bulk Modulus deduced from Model Equations of State,” J. Appl. Phys. 56, 21742179.CrossRefGoogle Scholar
Novikov, D. L., Mryasov, O. N., and Freeman, A. J. (1994). “Anisotropic Compressibility and Effects of Pressure on the Electronic Structure and T c of Hg-based superconductors,” Physica C 222, 3846.CrossRefGoogle Scholar
Putlin, S. N., Antipov, E. V., Chmasissem, O., and Marezio, M. (1993). “Superconductivity at 94 K in HgBa 2CuO 4+δ,Nature (London) 362, 226229.CrossRefGoogle Scholar
Putlin, S. N., Antipov, E. V., and Marezio, M., (1993a). “Dependence of the Superconducting Transition Temperature of HgBa 2CuO 4+δ on Hydrostatic Pressure,” Physica C 212, 266.Google Scholar
Schilling, A., Cantoni, M., Guo, J. D., and Ott, H. R. (1993). “Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System,” Nature (London) 363, 5658.CrossRefGoogle Scholar
Schilling, J. S., and Klotz, S. (1992). In Physical Properties of High Temperature Superconductors III, edited by D. M. Ginzburg (World Scientific, Singapore), p. 59.Google Scholar
Schwartz, J., Wolters, Ch., Amm, K. M., and Sun, Y. R. (1996). “HgBaCaCuO Superconductors: Processing, Properties and Potential,” Physica B 216, 261265.CrossRefGoogle Scholar
Wagner, J. L., Radaelli, P. G., Hinks, D. G., Jorgensen, J. D., Mitchell, J. F., Dabrowski, B., Knapp, G. S., and Beno, M. A. (1993). “Structure and Superconductivity of HgBa 2CuO 4+δ,Physica C 210, 447454.CrossRefGoogle Scholar
Wolters, Ch., Amm, K. M., Sun, Y. R., and Schwartz, J. (1995). “Bulk Processing of HgBaCuO Compounds by a Two Zone Technique,” IEEE Trans. Appl. Supercond. 5, 15061509.CrossRefGoogle Scholar
Xiong, Q., Xue, Y. Y., Cao, Y., Chen, F., Sun, Y. T., Gibson, J., Chu, C. W., Liu, L. M., and Jacobson, A. (1994). “Unusual Hole Dependence of T c in HgBa 2CuO 4+δ,Phys. Rev. B 50, 1034610349.CrossRefGoogle ScholarPubMed
Yamada, Y., Jorgensen, J. D., Pei, S., Lightfoot, P., Kodama, Y., Matsumoto, T., and Izumi, F. (1991). “Structural Changes of Superconducting YBa 2Cu 4O 8 Under High Pressure,” Physica C 173, 185194.CrossRefGoogle Scholar