Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T11:49:15.316Z Has data issue: false hasContentIssue false

X-ray diffraction study of distorted perovskites R(Co3/4Ti1/4)O3 (R = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho)

Published online by Cambridge University Press:  26 October 2017

K. AlHamdan
Affiliation:
Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. Anike
Affiliation:
Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure and powder patterns were prepared for the distorted perovskite series R(Co3/4Ti1/4)O3 (R = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho). The R(Co3/4Ti1/4)O3 members are isostructural with each other and are crystallized in the orthorhombic crystal system with space group Pnma, Z = 4. From R = La to Ho, the lattice parameters a range from 5.4614(3) to 5.5368(2) Å, b range from 7.7442(4) to 7.4859(2) Å, and c range from 5.5046(3) to 5.2170(2) Å. The unit-cell volumes, V which range from 232.81(2) to 216.237(11) Å3 follow the trend of “lanthanide contraction”. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ, and ω, which represent rotations of an octahedron about the pseudo-cubic perovskite [110]p, [001]p and [111]p axes. All three tilt angles increase across the lanthanide series (for R = La to R = Ho: θ increases from 8.34° to 17.00°, ϕ from 6.24° to 8.53°, and ω from 10.41° to 18.96°), indicating a greater octahedral distortion as the ionic radius of R3+ [r(R3+)] decreases. The bond valence sum values for the (Co/Ti) site and the R site of R(Co3/4Ti1/4)O3 reveal no significant bond strain in these compounds. X-ray diffraction patterns of the R(Co3/4Ti1/4)O3 samples were submitted to the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.Google Scholar
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P. and Gogna, P. (2007). “New directions for low-dimensional thermoelectric materials,” Adv. Mater. 19, 10431053.CrossRefGoogle Scholar
Ghamaty, S. and Eisner, N. B. (1999). “Development of Quantum Well Thermoelectric films,” Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD, pp. 485488.Google Scholar
Glazer, A. M. (1972). “The classification of tilted octahedra in perovskites,” Acta Crystallogr. B 28, 33843392.CrossRefGoogle Scholar
Goldschmidt, V. M. (1926). “Die Gesetze der Krystallochemie,” Naturwissenschaften 14(21), 477485.CrossRefGoogle Scholar
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.Google Scholar
He, T., Chen, J. Z., Calvarese, T. G., and Subramanian, M. A. (2006). “Thermoelectric properties of La1−x A x CoO3 (A=Pb, Na),” Solid State Sci. 8(5), 467469.Google Scholar
Hiramatsu, H., Yanagi, H., Kamiya, T., Ueda, K., Hirano, M., and Hosono, H. (2008). “Crystal structure, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M=Bi, La; Ch=S, Se, Te): effects of electronic configurations of M3+ ions,” Chem. Mater. 20, 326334.Google Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Guassian,” J. Appl. Crystallogr. 15, 615620.CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303, 818821.CrossRefGoogle ScholarPubMed
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “ In-situ growth of c-axis-oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.Google Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, USA: Los Alamos National Laboratory.Google Scholar
Luu, S. D. N. and Vaquelro, P. (2013). “Synthesis, structural characterization and thermoelectric properties of Bi1−x Pb x OCuSe,” J. Mater. Chem. A, 1, 1227012275.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.CrossRefGoogle Scholar
Mikami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.Google Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem. 178, 16701674.CrossRefGoogle Scholar
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94(10), 65796582.CrossRefGoogle Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).Google Scholar
PDF (2017). Powder Diffraction File, produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA, 19073-3273, USA.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Shin, W. and Murayama, N. (2000). “Thermoelectric properties of (Bi,Pb)-Sr-Co-O oxide,” J. Mater. Res. 15(2), 382.CrossRefGoogle Scholar
Terasaki, I., Sasago, Y., Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, 1268512687.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Toby, B. H. (2001). “ EXPGUI’, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Tritt, T. M. (1996). “Thermoelectrics run hot and cold,” Science 272, 12761277.Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B. (2001). “Growth of one-dimensional Si/SiGe heterostructures by thermal CVD,” Nature 413, 597602.Google Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.CrossRefGoogle Scholar
Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., and Mighell, A. D. (2001). “JCPDS-ICDD Research Associateship (cooperative program with NBS/NIST),” J. Res. Natl. Inst. Stand. Technol. 106(6), 10131028.CrossRefGoogle ScholarPubMed
Wong-Ng, W., Yang, Z., Hu, Y. F., Huang, Q., Lowhorn, N., Otani, M., Kaduk, J. A., Green, M. and Li, Q. (2002). “Thermoelectric and structural characterization of Ba2Ho(Cu3−x Co x )O6+x ,” J. Appl. Phys. 105(6), 63706.Google Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr-Ca-Co-O system,” J. Appl. Phys. 107, 033508.CrossRefGoogle Scholar
Wong-Ng, W., Luo, T., Tang, M., Xie, M., Kaduk, J. A., Huang, Q., Yang, Y., Tang, M. and Tritt, T. (2011). “Crystal chemistry and thermoelectric properties of compounds in the Ca-Co-Zn-O system,” J. Solid State Chem. 184(8), 2159.CrossRefGoogle Scholar
Wong-Ng, W., Laws, W., and Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La-Ca-Co-O system,” Solid State Sci. 17, 107110.CrossRefGoogle Scholar
Wong-Ng, W., Laws, W., Talley, K. R., Huang, Q., Yan, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO-½Nd2O3-CoOz system at 885 °C in air,” J. Solid State Chem. 215, 128134.Google Scholar
Wong-Ng, W., Yan, Y., Kaduk, J. A., and Tang, X. F. (2016a). “X-ray powder diffraction reference patterns for Bi1−x Pb x OCuSe,” Powder Diffr. 31(3), 223228.Google Scholar
Wong-Ng, W., Liu, G., Levin, I., Williamson, I., Ackerman, P., Talley, K. R., Martin, J., AlHamdan, K., Kaduk, J. A., and Li, L. (2016b). “X-ray diffraction and density functional theory studies of R2FeCoO6 (R=Pr, Nd, Sm, Eu, Gd),” Powder Diffr. 31(4), 259266.Google Scholar
Zhao, Y., Weider, D. J., Parise, J. B., and Cox, D. E. (1993a). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part I,” Phys. Earth Planet. Inter. 76, 116.Google Scholar
Zhao, Y., Weider, D. J., Parise, J. B., and Cox, D. E. (1993b). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part II,” Phys. Earth Planet. Inter. 76, 1734.Google Scholar