Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T14:06:36.023Z Has data issue: false hasContentIssue false

X-ray diffraction powder data of ambroperuvin, a new pseudoguaianolide from Ambrosia peruviana

Published online by Cambridge University Press:  22 June 2017

Julia Bruno-Colmenárez*
Affiliation:
Laboratorio de Materiales para Tecnologías Emergentes, Instituto Venezolano de Investigaciones Científicas, Maracaibo, Venezuela
Juan M. Amaro-Luis
Affiliation:
Laboratorio de Productos Naturales, Mérida, Venezuela
José Miguel Delgado
Affiliation:
Laboratorio de Cristalografía-LNDRX, Universidad de Los Andes, Mérida, Venezuela
Graciela Díaz de Delgado
Affiliation:
Laboratorio de Cristalografía-LNDRX, Universidad de Los Andes, Mérida, Venezuela
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Ambroperuvin is a new pseudoguaianolide isolated from Ambrosia peruviana Willd., a plant used in traditional medicine in Venezuela. The analysis of the X-ray powder pattern being reported led to an orthorhombic unit cell with space group P212121 and cell parameters a = 15.999(6) Å, b = 11.263(2) Å, c = 9.112(2) Å. No detectable impurities were observed.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anaya, A. L. and del Amo, S. (1978). “Allelopathic potential of Ambrosia cumanensis H.B.K. (Compositae) in a tropical zone of Mexico,” J. Chem. Ecol. 4, 289304.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29(Suppl. S2), S7S12.Google Scholar
Mighell, A., Hubbard, C., and Stalick, J. (1981). NBS·AIDS*83: a FORTRAN program for crystallographic data evaluation. National Bureau of Standards. Technical Note 1141, USA.Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCr CPD-Newslett. 26, 1219.Google Scholar
Roth, I. and Lindorf, H. (2002). South American Medicinal Plants: Botany, Remedial Properties and General Use (Springer Verlag, Heidelberg).CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Vallcorba, O., Rius, J., Frontera, C., Peral, I., and Miravitlles, C. (2012). “DAJUST: a suite of computer programs for pattern matching, space-group determination and intensity extraction from powder diffraction data,” J. Appl. Crystallogr. 45, 844848.CrossRefGoogle Scholar
Supplementary material: File

Bruno-Colmenárez supplementary material

Bruno-Colmenárez supplementary material

Download Bruno-Colmenárez supplementary material(File)
File 335.3 KB
Supplementary material: File

Bruno-Colmenárez et al. supplementary material

Supplementary data

Download Bruno-Colmenárez et al. supplementary material(File)
File 46.2 KB