Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T23:02:37.277Z Has data issue: false hasContentIssue false

X-ray characterization of the new nasicon compositions Na3Zr2−x/4Si2−xP1+xO12 with x=0.333, 0.667, 1.000, 1.333, 1.667

Published online by Cambridge University Press:  10 January 2013

M. Lucco-Borlera
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino
D. Mazza
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino
L. Montanaro
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino
A. Negro
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino
S. Ronchetti
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino

Abstract

It is known that solids with composition Na3Zr2Si2PO12 heated at 1200 °C crystallize in the nasicon structure. This material shows a high ionic conductivity that represents an interesting improvement in the field of solid electrolytes. Our experimental results allow to establish for the first time that nasicon structures are stable along the compositional join Na3Zr2−x/4Si2−xP1+xO12 with x extending from 0 to 1.667. These structures are characterized by a Zr underoccupation of octahedral sites and a constant number of Na+ ions. This fact envisages a possible application of these materials in the field of ceramic sensors and ionic conductors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentzen, J. J., and Nicholson, P. S. (1980). “The preparation and characterization of dense, highly conductive Na 5GdSi 4O 12 Nasicon (NGS),” Mater. Res. Bull. 15, 17371745.CrossRefGoogle Scholar
Boilot, J. P., Salanié, J. P., Desplanches, G., and Potier, D. L. (1979). “Phase transformation in Na 1+xZr 2Li xP 3−xO 12 compounds,” Mater. Res. Bull. 14, 14691477.CrossRefGoogle Scholar
Caneiro, A., Fabry, P., Khireddine, H., and Siebert, E. (1992). “Performance characteristic of sodium super ionic conductor prepared by the sol-gel route for sodium ion sensors,” Anal. Chem. 25502557.Google Scholar
Clearfield, A. (1980). Mater. Res. Bull., 15, 1603 and ICDD card 35–125.CrossRefGoogle Scholar
Colomban, Ph. (1989). “Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites,” Ceramics Intern. 15, 23–50.Google Scholar
Gasmi, N., Gharbi, N., and Zarrouk, H. (1995). “Comparison of different synthesis methods for Nasicon ceramics,” J. Sol-Gel Sci. and Tech. 4, 231–237.CrossRefGoogle Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na 1+xZr 2Si xP 3−xO 12,Mater. Res. Bull. 11, 173182.CrossRefGoogle Scholar
Kohler, H., Schulz, H., and Melnikov, O. (1983). “Composition and conduction mechanism of the Nasicon structure. X-ray diffraction study on two crystals at different temperatures,” Mater. Res. Bull. 18, 11431152.CrossRefGoogle Scholar
Mazza, D., Lucco-Borlera, M., Busca, G., and Delmastro, A. (1993). “High quartz solid solution phases from xerogels with composition 2MgO·2Al 2O 3·5SiO 2 (μ-cordierite) and Li 2O·Al 2O 3·nSiO 2 (n=2 to 4) (β-eucryptite): characterization by XRD, FTIR and surface measurements,” J. Eur. Ceram. Soc. 11, 299308.CrossRefGoogle Scholar
Mazza, D., and Lucco-Borlera, M. (1994). “Effect of the substitution of boron for aluminium in the β-eucryptite LiAlSiO 4 structure,” J. Eur. Ceram. Soc. 13, 6165.CrossRefGoogle Scholar
Mazza, D., and Lucco-Borlera, M. (1997). “New X-ray powder diffraction data for Fe, B substituted Rb-leucites (RbFeSi 2O 6 and RbBSi 2O 6),” Powder Diffr. 12, 8789.CrossRefGoogle Scholar
Mazza, D. (1996). “La diffrazione dei Raggi X dai Materiali Policristallini,” C.L.U.T. Editrice, Torino.Google Scholar
Mc Entire, B. J., Miller, G. R., and Gordon, R. S. (1979). “Sintering of polycrystalline ionic conductors: β-alumina and Nasicon in Sintering Process,” Mat. Sci. Research. 13, Ed. G. C. Kuczynski, p. 517–524, Plenum Press.Google Scholar
Perthuis, H., and Colomban, Ph. (1984). “Well densified Nasicon type ceramics elaborated using sol-gel process and sintering at low temperatures,” Mater. Res. Bull. 19, 621631.CrossRefGoogle Scholar
Perthuis, H., and Colomban, Ph. (1986). “Sol-gel route leading to Nasicon ceramics,” Ceramics Intern. 12, 39–52.Google Scholar
Rudolf, P. R., Subramanian, M. A., and Clearfield, A. (1985). “The crystal structure of a nonstoichiometric Nasicon,” Mater. Res. Bull. 20, 643651.CrossRefGoogle Scholar
Rudolf, P. R., Clearfield, A., and Jorgensen, J. D. (1988). “A time of flight neutron powder Rietveld refinement study at elevated temperature on a monoclinic near-stoichiometric Nasicon,” J. Solid State Chem. 72, 100112.CrossRefGoogle Scholar
Yoldas, B. E., and Lloyd, I. K. (1983). “Nasicon formation by chemical polymerization,” Mater. Res. Bull. 18, 11711177.CrossRefGoogle Scholar